Software Journal: Theory and Applications 2,2022

UDC 519.68
DOI: 10.15827/2311-6749.22.2.1

Building a multifunctional lexical component
for a natural language text analysis system

LS. Smirnov !, Postgraduate Student, dru0121@gmail.com
V.A. Billig 1, Ph.D. (Engineering), Senior researcher, Associate Professor,
vladimir-billiga@yandex.ru

1 Tver State Technical University, Software faculty, Tver, 170026, Russian Federation

The paper proposes a new improved UniLemm algorithm (universal lemmatizer), which allows solving both
the direct problem - constructing a word lemma, and the reverse one - constructing word forms with fixed gram-
memes according to the lemma.

The lemmatizer is an important component of advanced artificial intelligence systems that analyze natural
language texts.

The task of lemmatization is to assign the initial form (lemma) to each input text word.

This paper reduces the lemmatization problem to the classification problem. Each word form with given gram-
memes (grammatical categories) is assigned a certain class - a declension paradigm, where P paradigm is a set of
declension rules.

When building a classifier for the lemmatization problem, we take into account the existence of non-dictionary
words, as well as the situation when grammemes for the word form are not specified.

The OpenCorpora Russian language dictionary acts as a training sample in building a classification tree. When
constructing the classification tree nodes, we take into account two important orthogonal aspects: the suffixes of
word forms and a set of grammemes. The set of grammemes used in this work is a subset of the set of grammemes
used in the Russian National Corpus and a superset for grammemes used in the Universal Dependencies (UD)
notation.

When building a classification tree, we use an original data structure based on RDR rules, which makes it
possible to formulate not only a declension rule for a word form, but also possible exceptions.

The UniLemm algorithm builds a combined classification tree containing suffix subtrees and grammeme sub-
trees. Suffix trees are for primary classification, while grammeme trees allow resolving homonymy.

The final stage of the algorithm presents the final classification tree as DFA (Deterministic Final Automaton).

The correctness and quality of the algorithm was checked both on the control sample of OpenCorpora and on
two subcorpuses containing original texts of various subjects and styles. The algorithm has shown good results
both in the accuracy of solving the lemmatization problem (above 90%) and in the text processing speed (250-300
thousand words per second in single-threaded mode).

Keywords: natural language processing, morphology, lexicon, decision tree, inflection paradigm, lemmatiza-
tion.

The task of Natural Language Understanding (NLU) is one of the most important tasks of modern computer
science. There are various approaches to its solving, ranging from fairly simple methods used in numerous bots
that support a dialogue in a limited problem area to original algorithms, which are implemented, for example, in
systems for translating texts from one language to another.

The authors explore an approach based on the LRA semantics (Linguistic Rational Agents) [1]. The main idea
of this approach is to represent the text in natural language as formulas of some logic, which would make it possible
to effectively solve problems related to knowledge processing and logical inference.

The implementation of text comprehension based on LRA semantics consists in constructing linguistic and
rational agents and organizing their subsequent interaction. The idea of this approach is that both aspects of the
text (syntactic and semantic) are extremely important for understanding the meaning, and the main problem is to
harmonize these aspects. It is assumed that a particular text allows a single syntactic meaning that a linguistic agent
can construct. This value can be interpreted in different ways depending on the problem being solved. Such an
interpretation that can only be obtained based on extralinguistic knowledge is the meaning of the text. It is also
worth noting that from the LRA point of view, a text can have several meanings depending on the rational agents
involved in the analysis, but it always has only one meaning received by the linguistic agent [2].

In order to get the meaning of the text, the linguistic agent must first perform a number of standard steps for
analyzing a text, which are aimed at its structuring and disambiguation. One of the first stages is morphological
analysis; its purpose is to match each source text lexeme with a set of morphosyntactic attributes (grammemes)
and a dictionary form (lemma). Both of these tasks are extremely important. Grammemes are essential for deep
parsing. The completeness of the set of grammes is a key factor for the subsequent extraction of semantic

1

Software Journal: Theory and Applications 2,2022

relationships between objects. Lemmatization allows the linguistic agent to abstract from complex word form
matching rules, which simplifies the subsequent analysis stages and allows more accurate determining the meaning
of specific words. This effect is especially strong when working with highly inflectional languages, such as Rus-
sian. Both of these problems can be solved jointly and separately. This work proposes an improved algorithm for
solving the lemmatization problem.

The classical statement of the lemmatization problem is as follows: to find a lemma for a given word form and
a set of grammes (initial word form). The problem has a unique solution in this formulation. But there are problems
associated with the need to find the appropriate set of grammes that require context analysis. In practice, a number
of situations require to find a lemma for a word form when grammes are completely or partially unknown. In this
situation, the solution for words that have homonyms is a set of lemmas, one for each homonym.

The complexity of the lemmatization task also is in the fact that a living natural language develops dynamically
and continuously, and the linguistic resources currently available do not cover it in full. Therefore, the problem of
lemmatization of the so-called non-dictionary words arises.

There are recent studies comparing various software modules for solving the problem of morphological anal-
ysis [3, 4, 5]. Implementations differ in a set of functional properties, a set of grammars used, and the work quality.
Classical solutions based on dictionaries, decision trees and hidden Markov models (Pymorphy [6], TreeTagger
[7], MyStem [8], TnT [9], etc.) are still the most popular due to their relative simplicity, it is enough high precision
and speed. Methods based on neural networks show the highest accuracy. However, various problems associated
with performance and the learning process prevent their widespread use for solving applied NLU problems.

The lemmatization task in such modules is considered as a separate one, not connected in any way with the
main analysis process. Most of the developed algorithms for solving it somehow use a certain dictionary, external
or automatically extracted from the text corpus. The simplest dictionary has the form of a table, where each word
is associated with its lemma. Then there is no parsing of non-dictionary words. Another popular approach is using
prefix trees. This approach uses advantage of the morphological features of inflectional languages, namely the fact
that the vast majority of forms are formed by modifying the existing form ending according to certain rules. It is
assumed that words that end in the same way are parsed in the same way. This feature allows building a certain
prefix tree (or several trees) by expanding words. These trees are typically depth-limited using various heuristics
or hyperparameters that aim to find a sufficient suffix length needed for lemmatization.

As it was mentioned above, most of the developed algorithms consider the lemmatization problem separately
from the problem of morphological analysis. However, according to the authors, an effective solution of the lem-
matization problem in both given formulations can significantly simplify the problem of morphological analysis.
This paper proposes a universal lemmatization algorithm UniLemm, which allows solving the lemmatization prob-
lem in both formulations for inflectional languages, does not involve optimizing hyperparameters for the particular
language needs, and also makes it possible to solve the inverse problem, i.e. obtaining a form with the required
grammemes using a lemma. It is also possible to use the algorithm in solving other problems that arise during
morphological analysis.

UniLemm algorithm. Building a classification tree

Let us reduce the formulated lemmatization problem to the classification problem. Each word form can be
assigned a certain class - a declension paradigm. The paradigm-based approach considers various word forms as
special cases of general word-formation rules. At the same time, a specific word-formation rule shows how to
obtain a given word form with the desired grammemes from a lemma by adding a certain suffix to the lemma stem.
Lemmas with the same sets of rules form a paradigm. The approach has been successfully applied in various
morphological analyzers [6, 8].

In the framework of this work, we assume the paradigm P to be the set of declination rules. P = {Ry, Ro,..., Rn}.
Each R; rule specifies the following transformation:

Ri ={SivAi}_>{si‘vA\"}
where S; is a suffix of the original word form replaced by S, suffix. After the replacement, the word form is

transformed into a lemma. A; are grammemes of the original word form replaced by A grammemes. As a result,

the resulting set of grammemes represents the lemma grammemes.

The task of lemmatization in this approach is reduced to the classification task - finding the desired paradigm
and the number of the rule within the paradigm, with the subsequent application of this rule to the original word.
Moreover, the rule formulation makes it possible to apply it in the reverse order, to obtain the word form from the
lemma. We can get any word form knowing the paradigm and the rule.

One of the approaches used to solve the classification problem is based on the building a classification tree.
The classification tree can be based on the training sample. The training sample can be viewed as a set of records
with fields containing input parameter data. Each record in the training sample has an indicated class of a target
parameter.

2

Software Journal: Theory and Applications 2,2022

Let us take a given set of input parameters. The task of the classifier is to determine the object class from this
set with the presented values. A typical example is pattern recognition. The classifier is presented with pictures of
objects, in response it gives out the object class: this is a “rabbit”, this is a “hare”, this is a “wolf”. In our case, the
classifier is presented with a word form and a set of its grammemes. In response, it issues a word form class -
a paradigm and the corresponding rule.

An object class is a target parameter. It has a discrete type with a finite number of values. The parameter values
are class names, also called class labels.

Typically, the algorithm for building a decision tree belongs to the class of greedy algorithms. It recursively
builds a binary decision tree from top to bottom starting from the root. It selects the most informative parameter
for each node of the tree and choses its value in the node so as to split the initial sample (database records) into
two samples; the classes are separated from each other in the best possible way in each of them. Ideally, one of the
selections should contain records that belong to only one class.

There are different ways to select an appropriate parameter and its value in a tree node. For example, we can
use an entropy criterion. We reduce the uncertainty in choosing the appropriate class by minimizing the entropy.

We use the well-known Shannon formula to calculate the entropy criterion:

N

entropy =—>" " p, log2(p,).

The formula uses pi that are the probabilities of class occurrence calculated as the frequency of occurring
classes in the sample.

The task of classifying word forms has its own characteristics due to the choice of a grammeme format and how
a training sample and a classification tree are built. Let us consider the solution of these problems in more detail.

Gramme format

A grammeme is a grammatical meaning, one of the grammatical category elements. For example, the Russian
language is characterized by such grammatical categories as gender, number, case, etc. These categories can have
specific meanings: singular, masculine, nominative case. A set of grammemes for a particular word form is repre-
sented as a binary vector; its elements take the value 1 if the word form has the corresponding grammeme, and
0 otherwise. Such representation makes it possible to carry out set-theoretic operations on grammemes effectively.
In general, there is no restriction on a single meaning within a grammatical category. However, the order of the
grammemes in the vector is important. The algorithm involves working with a fixed set of categories and gram-
memes, which are known at the stage of building a training set.

There is no generally accepted standard that states many categories and grammars in the Russian language.
There are several grammeme annotation systems, ranging from the Russian National Corpus [10], which takes into
account the most rare grammatical features, to the Universal Dependencies (UD) notation [11] that, on the con-
trary, is aimed at abstracting from the language details where possible.

This paper considers the OpenCorpora format [12] as the set of grammemes since it is one of the most gram-
meme-rich formats. Since not all grammemes are of value as automatic text processing tasks, we have selected 60
grammemes that are the most significant from the point of view of morphological and syntactic analysis tasks. The
constructed set of grammemes is a subset of the set of grammemes used in the Russian National Corpus and a
superset for UD grammemes, which made it possible to use any of the corpora in developing and testing the model.

A training sample format

We can consider the training sample represented by the language corpus as a set of pairs containing a word
form and a declension rule. The declension rule is represented as a pair including the number of the paradigm and
the number of the rule within the paradigm. Let us consider a training set containing some forms of the noun
“mpu10” and the verb “mbITh” as an example.

This training set demonstrates several examples of homonymy. For example, the forms of the noun “mpu10” in
the nominative and genitive case coincide with the form of the verb “wash” in the past tense and neuter gender. In
addition, we can assess the impact of using declination paradigms. So, most verbs of the first conjugation (ending
in “-eTp”, “-aTh”, “-0TH”, “-BITH”, “yTH” in the initial form, not including exceptions) will change similarly to the
verb “MBITH” representing one paradigm.

An algorithm for building a classification tree

This paper considers the algorithm that is a modification of the LemmaGen algorithm [13]. The original algo-
rithm is based on building a data structure called the Ripple Down Rule (RDR). RDR rules were originally de-
signed to compactly represent and organize contextual knowledge by representing some form of a decision tree.
In [14], this data structure was used to solve the lemmatization problem.

Let us consider how the RDR rules that define the classification tree are built in the presented algorithm.

The tree nodes contain predicates defined over word suffixes and grammemes, and the tree leaves contain
lemmatization rules.

There are three stages in the algorithm (Fig. 1). The first stage sorts the input set. As a result, training examples
are arranged in lexicographic order according to the inverted word form. Then, based on the sorted set of examples,
an RDR (decision tree) is built using a recursive algorithm. The final step of the algorithm is to compress the
resulting tree by searching and reusing indistinguishable tree vertices:

Software Journal: Theory and Applications 2,2022

Table 1
A training set based on several forms of the noun “mb110” and the verb “mbITh”
Lemma \;\é?;? Grammemes Transformation rule
MBLIO mbuto [Noun, Inan, Neut, Nomn, Sing [{"",""}—=>{"",""}
MBLIO MbLIa Noun, Inan, Neut, Gent, Sing {"a","Gent"}—{"0",”"Nomn"}
MBLIO meuty [Noun, Inan, Neut, Datv, Sing {"y","Datv"}—>{"0","Nomn"}
MBLITO meuto [Noun, Inan, Neut, Accs, Sing {""Accs"}—>{"","Nomn"}
MBLITO meutom [Noun, Inan, Neut, Ablt, Sing {'M"," Ablt"}—{"","Nomn"}
MBLIO MbLIE Noun, Inan, Neut, Loct, Sing {"¢","Loct"}—{"0",”"Nomn"}
MBITh MBITh Infn, Impf, Tran -}
Verb, Impf, Tran, Indc, P in .
MBITH MBI Meastz:’ p ’ an, dC, aSt7 S g’ {HHH,HVerb, IndC, Pa.st, Slng, MaSC”}—){”TB”,”Infn”}
MBITh MBbLIa I\:/:r;br; Impf, Tran, Indc, Past, Sing, "na","Verb, Indc, Past, Sing, Femn”}—{"1s",”Infn"}
MBITh MBLIO \I\GEL? Impf, Tran, Indc, Past, Sing, {"n0","Verb, Indc, Past, Sing, Neut"}—{"ts","Infn"}
MBITh mbeutn |Verb, Impf, Tran, Indc, Past, Plur [{"au","Verb, Indc, Past, Plur"}—{"ts",”Infn"}

The purpose of the LearnRecursive function is to build RDR for a sorted set of training examples.

There are several formal definitions of RDR. In this paper, RDR refers to rules with their syntax represented
as a BNF definition:

RDR ::= IF <condition> THEN <rule> [EXCEPT <RDR_list>]

Thus, RDR is an IF-THEN-EXCEPT rule, where condition is a predicate and rule is a classification rule.
The RDR structure can also contain a non-empty list of exception rules that refine the original rule. Thus, RDRs
have much in common with decision trees: the rules and their exceptions are ordered, the first rule whose condition
is met and none of the conditions of the exception rules is met causes the corresponding rule classification rule
(in this case, lemmatization) to work. In general, RDR represents a decision tree that is not binary, but can be
reduced to binary by converting the set of exception predicates into a series of one-vs-all predicates.

The proposed algorithm is a recursive RDR construction procedure that splits the current training set into sub-
sets according to some predicate. A predicate can be defined either over a suffix of a word form or over gram-
memes. Being rule, both RDR variants contain the transformation rule most frequently encountered in the current
training set. After forming the predicate and the rule, the algorithm recursively continues its work on the obtained
subsets as long as it is possible to construct the corresponding predicate.

The algorithm starts by building a subtree of suffixes. The main idea is that each rule (and therefore subtree)
combines the words of the original training set that end in some common suffix. The search for a common suffix
takes into account the sorting of the original set. The training set is effectively divided into subsets by the symbol
preceding the common suffix. The separa-
tion procedure is repeated until only the

1 function LearnRDR(examplesList) returns CompressedRDR same words remain in the subset (in the case
1.1 sortedExamplesList = Sort(examplesList, 'reverse dictionary sort") of homonymy)_ Then the algorithm pro-
1.2 entireRDR = LearnRecursive(sortedExamplesList) ceeds to bU||d|ng a subtree of grammemes.
13 compressedRDR = Compress(entireRDR) Otherwise, the procedure is activated recur-
L4 return compressedRDR sively on the resulting subset.

The algorithm for building a grammeme
tree is similar to the classical algorithm for
building classification trees. First, we find
the grammeme with the lowest entropy
value. If several grammemes correspond to a division with the same entropy, then we choose the first grammeme
in order. The order of the grammemes in the vector is important: grammemes must be arranged according to some
linguistic intuition as to which ones play the biggest role in resolving homonymy. For example, for the Russian
language, it is more logical to first determine the part of speech and then ask more specific questions about number,
case, gender. This ordering is not necessary, but allows building trees with fewer nodes and a more human-like
decision process. In practice, the situation when there are two equivalent features according to the entropy criterion
is quite rare (less than 5% of all words for the Russian language). The constructed predicate allows us to divide

Fig. 1. The main function of the UniLemm algorithm

Software Journal: Theory and Applications 2,2022

the training set into subsets and to apply the algorithm to each of them recursively. The stopping rules allow
completing the tree building in the tree leaves.

Summarizing the above, we note that the UniLemm algorithm builds a combined classification tree containing
suffix subtrees and grammeme subtrees. Suffix trees are for primary classification, while grammeme trees allow
resolution of homonymy if any.

At the last stage, the built combined tree is compressed to eliminate possible redundancy.

The resulting tree can be represented as a DFA (Deterministic Final Automaton) under the following
conditions:

e each node in the suffix tree is considered a separate DFA state;

e each grammeme tree as a whole is considered a separate DFA state;

e transformation rules are considered separate DFA end states.

The constructed DFA automaton can be transformed into a similar DAFSA automaton (Deterministic Acyclic
Finite State Automaton), which has a minimum number of states. Such automaton can be considered as the end
result of the learning algorithm.

Experimental results

We used the OpenCorpora dictionary to build the classification tree and the corresponding automaton.
As usual, a part of the vocabulary was used for learning, the other part for control. We have obtained results for
three training options for 50, 80 and 90 percent of the vocabulary.

There is another interesting case when a control sample is not a dictionary but a set of marked up texts, where
the word lemmas are known as in a dictionary. For such experiments, we selected two publicly available text
corpora:

OpenCorpora subcorpus with removed homonymy. li includes texts of various subjects and styles;

UD subcorpus that includes Wikipedia articles. The grammeme format was converted to the OpenCorpora
format.

The experimental results are shown in Table 2.

Table 2
Test results
bl | Vo™ | Aot o neenens | Qpencorters | up seuray 0
1 50 93.82 89.12 86.10
80 95.81 91.50 89.71
90 98.50 94.61 93.45

Obviously, the algorithm shows sufficient accuracy for practical use on all control samples.

As an example, let us consider the result of the lemmatizer work on non-dictionary words using Academician
Shcherba’s famous phrase: “T'okast Ky3apa 1mreko OyanaHyia 00okpa u Kypasuut 0okpéuka”. In the case when
there are no specified grammemes for these words, the lemmatizer was able to unambiguously determine lemmas
for all words, except for the words “riokas” and “mrexo”. The lemmatizer has created two equivalent variants
for these words; they are shown in the Lemma 1 and Lemma 2 columns of Table 3.

When grammemes are partially specified for word forms (it is enough to specify the part of speech), ambigui-
ties are eliminated, the lemmatizer works correctly on all non-dictionary words in this example.

Table 3
Lemmatizer result for the phrase «I';iokas ky3apa mreko 0yajanyJia 00Kpa u KypaAsiYHT 00OKpPEHKA»
Original word | Lemma 1 Lemma 2
TJIOKast rinokathb | INFN, Impf, Tran rinokas | GRND, Impf, Tran, Pres
Ky3zapa Ky3zapa | NOUN, Femn, Anim
LITEKO mrreko | NOUN, Neut, Inan, Nomn, Sing urexo | ADVB
Oyutanyia oymnanyts | INFN, Petf, Tran
6oxpa 6okp | NOUN, Masc, Inan, Nomn, Sing
u u | CONJ
KYAPSYUAT kyapstauth | INFN, Impf, Tran
GOKpEHKA 6oxpénok | NOUN, Masc, Inan, Nomn, Sing

A qualitative analysis of lemmatization errors has shown that most errors are due to proper names and abbre-
viations, as well as inaccuracies in the markup itself (for example, violation of own rules for assigning infinitives

5

Software Journal: Theory and Applications 2,2022

as lemmas for participles and gerunds). In addition, there were found errors in reducing adverbs to adjectives and
restoring abbreviations. These and other corpora features were not taken into account when building the original
training set.

The accuracy of the UniLemm algorithm is comparable to other lemmatization algorithms [3, 4, 5]. The aver-
age parsing speed was 250-300 thousand words per second in a single-threaded mode. Comparative studies show
an average speed of tens of thousands of words per second for TreeTagger, TnT, etc. [5, 15]. However, a direct
comparison with other morphological analyzers is not entirely correct due to using different packages and hard-
ware.

Conclusion

The UniLemm algorithm was developed as a part of this work. The algorithm accuracy and speed is at least at
the level of other widely used tools that solve the lemmatization problem. The trained model can be used not only
for lemmatization, but also for inflecting words, as well as generating hypotheses for morphological parsing.

Future areas of research include:

e improving the accuracy of the model for the Russian language taking into account the peculiarities of the
training dictionary and the target format of morphological markup,

¢ learning similar models for other inflectional languages,

¢ developing an algorithm for morphological analysis based on the obtained model.

We plan using the presented model in the implementation of the lexical component of the text analysis system
based on LRA semantics [1] as a basis for morphological analysis and synthesis.

References

1. Dikovsky A. Linguistic<>Rational Agents' Semantics. J. of Logic Language and Information, 2017, vol. 4,
no. 26, pp. 1-97.

2. Smirnov I., Billig V. The role of the lexical agent in the LRA semantics. Informatics: Problems, Methods
and Technologies. Proc. XX Intern. Conf., 2020, pp. 1683-1689.

3. Trofimov I. Automatic morphological analysis for Russian: Application-oriented survey. Software Engi-
neering, 2019, vol. 10, no. 9-10, pp. 391-399. DOI: 10.17587/prin.10.391-399.

4. Sorokin A., Shavrina T., Lyashevskaya O., Bocharov V., Alexeeva S., Droganova K., Fenogenova A.,
Granovsky D. MorphoRuEval-2017: An evaluation track for the automatic morphological analysis methods
for Russian. Computational Linguistics and Intellectual Technologies: Proc. Int. Conf. “Dialogue”, 2017, vol. 16,
pp. 314-327.

5. Dereza O., Kayutenko D., Fenogenova A. Automatic morphological analysis for Russian: A comparative
study. Computational Linguistics and Intellectual Technologies: Proc. Intern. Conf. “Dialogue”, 2016, available
at: http://www.dialog-21.ru/media/3473/dereza.pdf (accessed May, 14, 2022):

6. Korobov M. Morphological analyzer and generator for Russian and Ukrainian languages. Analysis of Im-
ages, Social Networks and Texts: Proc. 4th Int. Conf., 2015, pp. 320-332. DOI:10.1007/978-3-319-26123-2_31.

7. Schmid H. Probabilistic part-of-speech tagging using decision trees. New Methods in Language Processing:
Proc. Int. Conf., 1994, vol. 12, pp. 44-49.

8. Segalovich 1. A fast morphological algorithm with unknown word guessing induced by a dictionary
for a web search engine. Machine Learning; Models, Technologies and Applications: Proc. Int. Conf., 2003,
pp. 273-280.

9. Brants T. TnT — a statistical part-of-speech tagger. ANLC '00: Proc. 6th Conf., 2000, pp. 224-231.

10. Lyashevskaya O.N., Plungyan V.A., Sichinava D.V. On the morphological standard of the Russian national
corpus. Russian National Corpus: 2003—-2005. Results and prospects, Moscow, 2005, 344 p.

11. Universal Dependencies. 2015, available at: http://www.universaldependencies.org (accessed May 14, 2022).

12.Bocharov V., Bichineva S., Granovsky D., Ostapuk N. Quality assurance tools in the OpenCorpora. Com-
putational Linguistics and Intelligent Technology: Proc. Intern. Conf. “Dialog”, 2011, pp. 10-17.

13. Jursic M., Mozetic I., Erjavec T., Lavrac N. LemmaGen: Multilingual lemmatisation with induced ripple-
down rules. J.UCS, 2010, vol. 16, no. 9, pp. 1190-1214.

14. Plisson J., Lavrac N., Mladenic D., Erjavec T. Ripple down rule learning for automated word lemmatiza-
tion. Al Communications, 2008, vol. 21, no. 1, pp. 15-26.

15.Horsmann T., Erbs N., Zesch T. Fast or accurate? — A comparative evaluation of PoS tagging models. Proc.
Int. Conf. GSCL, 2015, pp. 22-30.

Software Journal: Theory and Applications 2,2022

VJIK 519.68
DOI: 10.15827/2311-6749.22.2.1

IMocTpoeHne MHOrOpYHKIMOHAIBHOIO JEKCHYECKOT0 KOMIIOHEHTA
JUISI CHCTEMbI AHAJIN3a TEKCTOB HA eCTECTBEHHOM SI3bIKe

H.C. Cmupnos ', acnupanm, dru0121@gmail.com
B.A. Bunnuz ', x.m.n., c.u.c., ooyenm, npogeccop, viadimir-billig@yandex.ru

! Teepcxoii 2ocyoapcmeennbiii mexnuueckuii yuueepcumen, Kapeopa npospammnozo obecnedenus,
2. Teepw, 170026, Poccus

B pabore npennaraercs HOBBIN ynydmieHHbIH anroput™ Unilemm (yHHBepcalbHBIH JIeMMaTH3aTOp), KOTO-
PBIil MO3BONISET pelaTh Kak MpsMyIo 3a1ady — MOCTPOCHUE JIEMMBI CJIOBa, TaK U O0paTHYIO— IIOCTPOCHUE II0
JeMMme coBo(GOpM ¢ GUKCUPOBAaHHBIMH I'PaMMEMaMHU.

JlemMMaTH3aTOp SIBJISETCS BaXKHBIM KOMIIOHEHTOM MPOABHHYTHIX CUCTEM HCKYCCTBEHHOT'O MHTEJUIEKTa, 3aHU-
MAroOIIKXCs aHAJN30M TEKCTOB HAa €CTECTBCHHOM SI3BIKE.

3amada JleMMaTH3alUH 3aKJII0YaeTCs B IPHUINMCBIBAHUU KaKJIOMY CIOBY BXOIHOTO TEKCTa €ro HayaJlbHOU
(hopMBI (JIeMMBI).

B pabore 3amaua seMMaTH3aIMK CBOJMUTCS K 3a1ade Knaccupukannu. Kaxmol cioBodopme ¢ 3aJaHHBIMH
rpamMMeMamMu (TpaMMaTHYECKUMH KaTerOpHsIMI) IPUIMCHIBAETCS] HEKOTOPBIN KilacC — MapajinrMa CKIOHEHHUS, IIe
oA mapagurMoii P moHnMaeTcst MHOXKECTBO NPABUII CKIIOHCHHMS.

[Ipn moctpoennn Knaccupukaropa sl 3a1a4H JIEMMATH3ALNHA YIUTHIBACTCS CYIIIECTBOBAHNE HECIOBapHBIX
CJIOB, & TAKXKE CUTYyalusl, KOT/1a TPaMMEMBI JJIs CJIOBO(OPMBI HE 3a/1aHBbI.

Jnist noctpoeHus nepeBa Kilaccu(pUKaluK UCIoIb3yeTcs: 00ydaromas BEIOOpKa, posib KOTOPO HrpaeT ClIoBaph
pycckoro si3bika OpenCorpora. [Ipu mocTpoeHun y3inoB nepeBa KiacCU(QHUKALUKE YUUTHIBAIOTCS 1Ba BaXKHBIX Op-
TOTOHAJIBHBIX acnekTa — cyhdukcsl cnoBodopM 1 MHOXKECTBO TpamMmeM. IIprmMeHsiemoe B paboTe MHOXKECTBO
rpaMMeM SIBJISETCS MOJAMHOXECTBOM Habopa rpaMMeM, HCIOJIb3yeMOro B HAIIMOHAIBHOM KOPIIyCE PYCCKOTrO
SI3bIKa, ¥ HAIMHOXKECTBOM [T TpaMMeEM, HCIoib3yeMbix B HoTanuu Universal Dependencies (UD).

[Ipn mocTpoeHny nepeBa KiacCU(GUKAIMY UCIOIB3YETCsl OpUTHHAIBHAS CTPYKTypa JaHHBIX HA ocHOBe RDR-
TPaBHJI, O3BOJISIOIUX (GOPMYIHPOBATH HE TOJBKO MPABHUIIO CKIOHEHUS ISl CTIOBO(OPMBI, HO M BO3MOJKHBIE HC-
KITFOUEHUSI.

Anroput™ UniLemm cTpouT KOMOMHHPOBaHHOE JIEpEBO KiaccH(pUKaIu, coaepskaiiee moaaepesbs cyhhuk-
coB ¥ noziepeBbs rpaMmeM. CydQuKcHbIE 1epeBbs peAHa3HAYCHBI TSl HIEPBUYHOM KIacCHU()UKAINN, a IePEBbs
rpaMMeM IO3BOJISIIOT pa3peniaTh OMOHUMHUIO.

Ha 3akmrounTensHOM 3Tare ajJropuTMa UTOTOBOE AE€PEBO KiIacCH(UKAIMK IPEICTABISETCS B BUAE JIETEPMH-
HupoBanHoro aBromMata DFA (Deterministic Final Automaton).

ITpoBepka KOPPEKTHOCTH M Ka4eCTBa aJiTOpUTMa IPOBOAMIACH KaK Ha KOHTposIbHOH BbIOOpke OpenCorpora,
TaK ¥ Ha JBYX MOJKOPITyCax, COAEPIKAIMX OPUTMHANBHBIE TEKCTHI PA3TUYHON TEMAaTHUKH U CTUIIMCTHKH. AJTro-
PHTM TOKa3aJl XOPOIIHe PEe3yJIbTAThI b 110 TOUHOCTH PELICHUs 3a1auu ieMMari3anuu (Boiuie 90%), 1 o ckopocTu
00paboTtku TexcToB (250-300 THICAY CIOB B CEKYHIY B OJTHOTIOTOYHOM PEXHME).

Knrwouegvie cnosa: obpabomxa ecmecmeenno2o A3blka, MOPQOI02Us, 1eKCUKOH, 0epeso peuenull, napaouema
CKIIOHEHUsL, TeEMMAMUZAYUS.

Jlumepamypa

1. Dikovsky A. Linguistic—rational agents' semantics. J. of Logic Language and Information, 2017, vol. 4,
no. 26, pp. 1-97.

2. CwmupHoB U.C., bumur B.A. Ponb nekcuueckoro arenta B cemantike LRA // IapopmaTuka: npobieMsl,
METOABl M TeXHoJoruu: marep. XX MexayHap. Hayd. koHd. 2020. C. 1683-1689. DOI: 10.17587/prin.10.
391-399.

3. Tpodumos M.B. Mopdonorudeckuii ananus pycckoro si3pika: 0030p npukiagHoro xapakrepa // Ilpo-
rpammMHas nmkenepust. 2019. T. 10. Ne 9-10. C. 391-399.

4. Sorokin A., Shavrina T., Lyashevskaya O., Bocharov V., Alexeeva S., Droganova K., Fenogenova A.,
Granovsky D. MorphoRuEval-2017: An evaluation track for the automatic morphological analysis methods
for Russian. Computational Linguistics and Intellectual Technologies: Proc. Int. Conf. “Dialogue”, 2017, vol. 16,
pp. 314-327.

5. Dereza O., Kayutenko D., Fenogenova A. Automatic morphological analysis for Russian: A comparative
study. Computational Linguistics and Intellectual Technologies: Proc. Int. Conf. “Dialogue™. 2016. URL.: http://
www.dialog-21.ru/media/3473/dereza.pdf (nara o6pamenus: 14.06.2022).

6. Korobov M. Morphological analyzer and generator for Russian and Ukrainian languages. Analysis of Im-
ages, Social Networks and Texts: Proc. 4th Int. Conf., 2015, pp. 320-332. DOI:10.1007/978-3-319-26123-2_31.

Software Journal: Theory and Applications 2,2022

7. Schmid H. Probabilistic part-of-speech tagging using decision trees. New Methods in Language Processing:
Proc. Int. Conf., 1994, vol. 12, pp. 44-49.

8. Segalovich I. A fast morphological algorithm with unknown word guessing induced by a dictionary
for a web search engine. Machine Learning; Models, Technologies and Applications: Proc. Int. Conf., 2003,
pp. 273-280.

9. Brants T. TnT — a statistical part-of-speech tagger. ANLC '00: Proc. 6th Conf., 2000., pp. 224-231.
DOI:10.3115/974147.974178.

10. JIstmesckas O.H., Ilmynrsa B.A., CuannaBa [[.B. O mopdonornaeckom cranaapte HarmoHamsHOTO KOp-
myca pyccKoro s3bIka. HarmmoHameHBIH Kopmyc pycckoro si3pika: 2003-2005. Pe3ynbTaTel M IEpCIIEKTHUBHL
M., 2005. 344 c.

11. Universal Dependencies. 2015, URL: http://www.universaldependencies.org (nara o6parmenwus: 14.05.2022).

12.Bocharov V., Bichineva S., Granovsky D., Ostapuk N. Quality assurance tools in the OpenCorpora. Com-
putational Linguistics and Intelligent Technology: Proc. Int. Conf. «Dialog», 2011, pp. 10-17.

13. Jursic M., Mozetic I., Erjavec T., Lavrac N. LemmaGen: Multilingual lemmatisation with induced ripple-
down rules. J.UCS, 2010, vol. 16, no. 9, pp. 1190-1214.

14. Plisson J., Lavrac N., Mladenic D., Erjavec T. Ripple down rule learning for automated word lemmatiza-
tion. Al Communications, 2008, vol. 21, no. 1, pp. 15-26.

15.Horsmann T., Erbs N., Zesch T. Fast or accurate? — A comparative evaluation of PoS tagging models. Proc.
Int. Conf. GSCL, 2015, pp. 22-30.

