
Software Journal: Theory and Applications 2, 2021

 15

UDC 004.9

DOI: 10.15827/2311-6749.21.2.2

Modeling the reliability of geographically distributed computer systems

A.I Tikhomirov 1, Ph.D. (Engineering), tema4277@rambler.ru

A.V. Baranov 1, Ph.D. (Engineering), Anton.Baranov@jscc.ru

P.N. Telegin 1, Ph.D. (Engineering), pnt@jscc.ru

1 Joint Supercomputer Center of the Russian Academy of Sciences, Moscow, 119334,
Russian Federation

The paper presents an overview of platforms for simulation of distributed computing networks. The authors

have chosen a modeling platform that has the required functionality to study the problem of fault tolerance

of a distributed job management system, as well as to study the problem of scheduling user jobs for geographically

distributed resources. There is an investigation on the GridSim modeling platform for building a distributed net-

work model. Two models were implemented: one is for investigating fault tolerance of a distributed network job

management system problem, and the other one is for investigating auction methods for scheduling user jobs for

geographically distributed resources. The authors have formulated the advantages and disadvantages of distributed

network modeling. The paper presents an alternative approach requiring less computational resources.

Keywords: modeling platform, toolbox, distributed computing network modeling, GridSim.

With the increasing complexity of software and hardware systems used to implement a geographically distrib-

uted network of supercomputer centers (GDN), it is necessary to develop new methods allowing to adequately

reaching reliability and efficiency. Currently, the abstract models not based on specific hardware units are most

efficient for analyzing reliability. At the first design stage, these models make it possible to determine the optimal

reliability of logical subsystems. At the subsequent design stages, in order to move from abstract functional blocks

in the reliability model to more specific subsystems that can be brought to hardware and software implementation,

these logical subsystems should be considered in more detail. In other words, there is a problem of determining

the reliability of a parallel system consisting of a large number of elements.

The question of GDN efficiency is related to the task of scheduling user computing jobs for geographically

distributed computational resources. Like the task of assessing reliability, the task of assessing efficiency can be

solved using abstract functional blocks. However, the results will be of limited use, since most GDNs are charac-

terized by such basic properties as heterogeneity and non-expropriation of resources. These properties make the

task of evaluating effectiveness difficult.

Both problems can be solved using analytical and simulation methods. In analytical modeling, a distributed

network is represented as a queuing network. Optimizing the parameters of queuing networks is often a time-

consuming and resource-intensive job. Therefore, we used time-consuming analytical models.

Simulation modeling is the most efficient method for studying distributed networks, and sometimes it is prac-

tically the only available method for obtaining information about the network behavior, especially at the design

stage. Simulation modeling can use either a network layout, or a modeling platform. Creating a layout of a distrib-

uted network that simulates the real state as precisely as possible is a difficult and sometimes completely unsolv-

able task. Other members of the scientific community can rarely verify the results obtained using the simulation

model, and the model itself is rarely used for another research.

The use of a simulation modeling platform should reduce the time for developing a model and conducting an

experiment on the one hand, and should standardize the model building process on the other hand, which in turn

will allow verification and use of the results in other studies. Indeed, the modeling platform contains a set of

software tools for the network model description. Using these tools allows concentrating on exploring the model

characteristics. At the same time, it is reasonable to assume that the possibility of previously obtained results

reproduction will speed up new studies, as well as increase the efficiency of the existing ones.

The paper reviews existing modeling platforms for distributed networks. It also justifies the choice of a mod-

eling platform for the task of calculating GDN reliability and efficiency indicators.

Choosing a modeling platform

The paper [1] formulates a number of basic properties of the modeling platform, the implementation of which

guarantees its efficiency. First, the platform should provide usability, so that a researcher can focus on the study

of the problem being solved, and not on the issues of modeling a real system. Second, the launch of the model and

the simulation itself must be performed quickly, because the research process may require a large number of model

experiments. Third, an accurate (detailed) description of a real system requires that the modeling platform provide

Software Journal: Theory and Applications 2, 2021

 16

flexibility in setting, configuring, and possibility to add new model parameters without rebuilding the platform

implementation. Finally, the simulation platform must be scalable and support the ability to simulate tens of thou-

sands of resources and the same number of computational jobs.

Let us formulate the basic requirements for the simulation platform:

− the possibility to model the basic elements (storage resources, users, brokers, networks);

− the modeling speed that should significantly exceed the real system speed;

− the possibility to obtain modeling statistics for individual elements and for the operation of the model

as a whole;

− the comparability of the modeling results with the real situation;

− the possibility to simulate equipment malfunctions.

The requirements depend on the problem to be solved; this paper examines the problem of scheduling compu-

tational jobs for the GDN resources, therefore, as special requirements.

In addition to the basic ones, we will highlight special requirements that are important when studying the task

of scheduling jobs for GDN resources:

− the possibility to explore auction scheduling methods;

− the possibility to prioritize jobs;

− the possibility to simulate the real flow of jobs (real system log);

− the possibility to simulate background network traffic;

− the possibility to simulate the background load of computing resources (since non-expropriation resources

are being studied).

There are two classes of modeling platforms: emulators and simulators [2]. A simulator is software enabling

to model a real system, displaying part of the real phenomena and the properties in a virtual environment.

An emulator is a tool for reproducing the behavior of a device or a program in real time. In other words, an emulator

replaces the properties and functions of an original, doing real work, and a simulator only simulates these proper-

ties and functions without actually functioning. The best-known systems emulators are MicroGrid and Grid

eXplorer. The papers [3, 4] note that emulators have less flexibility in comparing scheduling algorithms. This is

primarily due to the lower speed of experiments in comparison with simulator systems, as well as the complexity

of reconfiguring a network model.

There is a large number of different simulation systems for simulating a distributed network. Simulators are

developed using different programming languages, have different architectures and assume different mechanisms

for describing and working with a model. This means that a network model prepared in one simulator cannot be

converted to a model in another simulator. In other words, there is no common standard for network modeling.

Most simulator systems are highly specialized, i.e. they should only be used to investigate specific characteristics

of the model, and that they include special tools that allow quick preparing of a model for investigating these

characteristics. The correct choice of the system allows describing the studied GDN model fast and in detail, and

concentrating on solving the AI specific problem. The paper [5] provides an extensive classification of simulator

systems according to various criteria including: the presence of a user interface for the simulator, a programming

language used to implement a model, an operating system that is required to run the simulator, a simulator software

architecture, etc. Most often, the classification of simulator systems is used in accordance with the type of a dis-

tributed network [6].

Table 1

Research area and simulator examples

Network type Field of study Examples

Computing network The efficiency of using various algorithms and

strategies for scheduling user jobs for distributed

network resources

• GridSim [7]

• SimGrid [8]

Data network The efficiency of various strategies for replication

and data retrieval in the data network
• OptorSim

• Monarc

• ChicSim

• GridNet

Service oriented network The effectiveness of cloud services • CloudGrid [9]

• GreenCloud 10]

Communication network The efficiency of algorithms for forwarding network

protocol packets. The efficiency of routing and

multicast over wired and wireless networks

• NS 2

• DaSSF

• OMNeT ++

• OPNET

Software Journal: Theory and Applications 2, 2021

 17

Table 2

Instruments and investigated characteristics

Network type Key tools of modeling The investigated characteristics

of the model

Computing network • basic scheduling algorithms

• auction methods

• topology toolkit

• policies and resource allocation

of compute nodes

• utilization of network resources

• average job execution time

• number of unfulfilled jobs

Data network • data replication protocols

• strategies and algorithms for

finding replica locations

• data access time

• disposal of storage

• network utilization

Service oriented network • tools to simulate starting and

stopping virtual network resources

no data

Communication network • Basic routing algorithms (DropTail,

RED, etc.)

• base of network protocols

• databases of models of network

devices provided by key manufacturers

no data

This paper presents the choice of a modeling platform for studying various auction models and their parame-

ters, therefore, in the future, we will consider the first class of simulators – computer network simulators.

As already noted, the most well-known class simulation systems are GridSim and SimGrid.

There follows the description of the criteria for the comparison.

Table 3

Comparison of simulators

Simulator Year Basis Programming language Research area

GridSim 2002 library SimJava2 Java Economic scheduling methods [5]

S imGrid 1999 Designed from the

ground up

C Working with custom jobs such as

DAG (Directed acyclic graph) and MPI

(Message Passing Interface).

Both simulators are software libraries. The network model is created using a programming language. The com-

parison is be based on the following criteria.

1. Modeling heterogeneous network resources;

2. Modeling a heterogeneous communication environment with a complex topology;

3. Modeling different resource allocation policies. RR or BackFill can be used for uniprocessor it is FIFO, for

multiprocessors (cluster systems).

4. Modeling auction mechanisms for scheduling computational tasks for distributed resources. The simulator

must provide the appropriate abstractions (resource broker, auctioneer, bid, etc.) to implement auction methods;

5. Adding user-developed algorithms for scheduling jobs;

6. Simulation of load based on the logs, workload from supercomputers;

7. Modeling network resource failures [11];

8. Modeling background network traffic based on probabilistic distribution.

The disadvantage of both simulators is the lack of a graphical interface, which makes it possible to track the

process of the scheduling algorithms. For a graphical presentation of the results, all information can be output to

a file after simulating using the gnuplot utility.

Table 4 shows from that the GridSim simulator meets all the requirements most fully. It is important to note

that this simulator was used to simulate the Nimrod\G resource broker [12].

Modeling failures of distributed network resources in the GridSim simulator

The GridSim simulator has the functionality required to simulate computational failures. At the same time, it

is possible to simulate the failure of a part of the SuperComputing Unit (CU) computing resources and the failure

of the entire CU. The failure detection mechanism implemented in GridSim is based on sending periodic signals

Software Journal: Theory and Applications 2, 2021

 18

to the CU. Signals are sent both by the metascheduler in order to form a list of available computing resources, and

by users in order to control job execution (Fig. 1).

Table 4

Comparison of simulator functionality

Comparison criteria GridSIm SimGrid

Modeling heterogeneous resources + +

Modeling communication heterogeneous

environment

+ -

Modeling different resource allocation

policies

There is

Already implemented: FCFS,

RR and Backfil varieties l

There is

order of arrival (FIFO) and its

variations (FRFO)

Modeling auction mechanisms There are basic abstractions no

Adding custom algorithms possible

Modeling load baseon logs possible possible

Network failure simulation possible no data

Modeling background network traffic yes no data

Let us consider a job-scheduling scenario implemented in GridSim.

1. The user contacts the metascheduler to obtain the CU identifier with the available amount of computing

resources required to process the user task.

2. Having received the CU identifier, the user places the job in the local job management system (LJMS) of

this CU.

3. LJMS allocates for a job computational resources from among those available in accordance with t imple-

mented job-scheduling algorithm.

4. The user controls task execution periodically referring to the LJMS of the CU.

Let us consider the algorithms for the LJMS implemented in GridSim.

− a scheduling algorithm in order of re-

ceipt (FIFO);

− a cyclic scheduling algorithm (RR,

Round Robin).

The main difference between the pre-

sented scheduling algorithms for LJMS is

processing of emerging failures on CU re-

sources. In the case of resource failure, the

jobs allocated by the FIFO scheduling al-

gorithm immediately terminate abnormally

and receive the corresponding error code.

The RR cyclic scheduling algorithm reallo-

cates jobs whose resources are faulty to

other available resources within the same

CU. In other words, unlike the FIFO algo-

rithm, the cyclical scheduling algorithm

does not rigidly fix computational re-

sources for a specific task. If there are no

available resources, then the users of these

tasks will receive the corresponding error

codes as in the previous case.

Both LJMS scheduling algorithms will

work in the same way in the event of a mal-

function of all the resources of the CU,

namely, all tasks processed in this CU will

terminate abnormally with the correspond-

ing error code. Note that the realistic be-

havior in GDN would be not to assign an error code to an abnormally terminated job, since the entire CU is out of

order and is inaccessible. However, in GridSim, the absence of a job completion code will lead to endless user

waiting for the job to complete. Let us describe the main parameters of the considered model with failures:

Fig. 1. Failure detection mechanism in distributed network

resources implemented in GridSim. Dashed lines shows how users

control the execution of the job by periodically polling the local

job control system of the CU, the metascheduler generates a list

of available resources also periodically polling the local

job control system

Software Journal: Theory and Applications 2, 2021

 19

Job parameters:

− the number of jobs: 50;

− the duration of each job (million instructions): 42,000,000;

− the volume of initial data/results (bytes): 100000.

− each job requires 2 CUs to complete.

Computing resource parameters:

− the number of CUs: 3;

− the number of computing modules (CM) in each CU: 10;

− the number of processors in each CU: 2;

− performance of each processor (millions of instructions per second): 50,000;

− a cyclic scheduling algorithm is selected as the LJMS algorithm;

The main characteristics of failure modeling are the number of VMs on which the failure occurred, the failure

time and duration. In our experiment, all these parameters were set by a hyperexponential distribution with the

following characteristics (mean, standard deviation, flow):

− the number of failed VMs (number of VMs/2, number of VMs, 4);

− the failure time (25, 100, 4);

− the failure duration (20, 25, 4).

Test results are displayed in text format and can be saved to a file. Table 5 shows just a part of the output of

the simulation results, since the output of all simulation statistics takes up a lot of space.

Table 5

The results of modeling the fault tolerance of the system

Job ID Job completion

status

ID of the resource

that ran the job

Cost Job execution

time

Time to receive

the job result

0 Success 85 2571.87 857.29 862.04

4 Success 40 2572.47 857.49 862.42

1 Success 85 2572.32 857.44 864.81

2 Success 90 2574.00 858.00 874.86

3 Success 90 2572.65 857.55 880.7

Modeling a system for scheduling user jobs for geographically distributed resources of a distributed network

In addition to modeling failures, the GridSim simulator has functionality that allows exploring the work

of different algorithms for scheduling user jobs. The toolkit available in the simulator allows flexible describing

of the computational and communication resources that are a part of the studied GDN model. For example, differ-

ent computing resources can have different cost of use, performance, architecture, operating system, resource al-

location policy: total time or space, time zone, etc. Each simulated resource must be connected to a router.

Users who submit the jobs on computing resources can be simulated with different application or quality of

service requirements. These requirements include the network data transfer rate (connection speed), the maximum

time allowed for a job to start, the time lag between job submissions, and a scheduling strategy such as optimizing

costs and/or time to complete jobs. Economic requirements (deadline and budget) can be set for each user, which

restricts the job execution. For example, a user may be simulated willing to spend as much money as required,

or a user willing to spend the exact amount.

The simulated jobs, in turn, are characterized by the duration of execution (in millions of instructions),

the amount of input and output data (in bytes).

In the studied example, the authors model a network with homogeneous resources, all of them have the same

performance. Two supercomputer centers (SCC) are modeled. The supercomputer center includes 3 computing

units, each has a configuration of 100 processors. Each processor in the computational unit is rated at 1000 MIPS.

The following numbers of users were simulated: 100, 200, and 300. Each user created 100 jobs, each job required

one processor to execute. The size of the each job initial data is 600 MB, the output data is 300 MB, the processing

time varied during the experiment.

The Dutch auction was used as an algorithm for scheduling computational jobs for remote resources.

The auction scheduling algorithm assumes competition of participants for the right to use resources; during com-

petition, the cost of using resources is determined. The Dutch auction is an auction for a decrease, the auctioneer

starts the auction with a knowingly high price, after which he begins to lower the bid. When only one member is

ready to buy an item, the item is sold. Our experiment had the established characteristics of the Dutch auction: the

maximum round duration was 1 minute, and the maximum number of rounds was 10.

The parameters of the computational resources and the parameters of the jobs of the model under study were

set as in the previous experiment. No background network traffic was modeled. The background loading of the

resources of the computing unit was not modeled. As in the previous case, the simulation result was presented in

text format, due to its cumbersomeness. Figure 2 shows only a part of the simulation results.

Software Journal: Theory and Applications 2, 2021

 20

About the boundary

of simulation platforms

We can formulate the fol-

lowing limitations of the simu-

lation platforms from the con-

ducted research:

1. High entry level. On the

one hand, simulators are versa-

tile, since they allow supple-

menting the model with custom parameters. On the other hand, the researcher needs to spend a lot of time to

understand the simulator structure and must have knowledge and programming skills using specific programming

languages. In addition to knowing the programming language, the user must understand how to work correctly

with platform abstractions. All this significantly increases the entry threshold. It takes a long time from the moment

an idea appears to the first model close to the real one.

2. No model reuse. The user must implement most of the scheduling algorithms on his own using a program-

ming language; this is a source of errors. It would simplify a single model space in which users could place their

models and implemented algorithms. It is reasonable to assume that the ideas of the open source community would

improve the quality of the models. The examples of such platforms are: Vagrant Cloud, Docker Hub, GitHub.

These examples demonstrate users’ ability to use or improve the ideas of other users, which significantly saves

time and allows getting new ideas (a user does not need to spend time studying a large amount of documentation,

but simply finds a similar problem and tries to use the idea).

3. Installation and initial configuration complexity. To work with the simulator, it is necessary to install and

configure compilers (gcc in our case) or virtual machines (jvm in the example). It also raises the entry barrier.

Using modeling tools in the cloud would also make them easier to use.

4. Large volume of resources. The performed experiment requires a large volume of computing resources to

simulate a real network.

5. Ease of use. Modeling tools have no familiar interactivity; most of them do not have a graphical interface.

The user can visualize the results only after finishing modeling using third-party visualization utilities. While in

some studies, for example, comparing different scheduling algorithms, visualization of the algorithm is of interest.

6. Lack of examples. The documentation of most simulators is compiled according to the rules for describing

a programming language library. However, it does not contain a large number of examples.

7. Complexity of choosing a simulator system. Before starting to use the simulator, the user should spend

a lot of time studying and choosing the simulator from a large number of existing solutions. The decision choice

can be based only on the analysis of scientific articles, since there is no sufficient information on the site.

The listed disadvantages have a negative impact on such properties of the modeling platform as usability and

ease of model configuration. The low-level implementation of the scheduling algorithms is a source of errors, and

the lack of open space for the exchange of models in the scientific environment limits the applicability of modeling

platforms.

At the same time, the functionality available in GridSim for modeling and detecting failures that have occurred

makes it possible to use this simulator to study distributed system reliability. The set of standard scheduling algo-

rithms implemented in GridSim, can be supplemented with other scheduling algorithms if necessary.

Due to the limitations of simulation platforms, an alternative approach is also being developed to determine

the numerical parameters of program execution.

Determining the numerical reliability parameters

We consider the problem of determining the optimal choice of the sizes of subtasks when executing programs

with parallelization according to data with a known a priori equipment reliability.

The job is divided into M subtasks, which are executed on N computing nodes of one or more computing

systems. Each node receives a data “chunk”, processes it and sends the results.

The nodes are combined into clusters. A set of clusters within a single computing center forms a computing

facility. Computing installations in different computing centers are aggregated into a geographically distributed

network.

A computing cluster contains N identical nodes (U1, ... UN).

The probability of the job completion at the computing node i will be denoted as P (Ui). The time of organizing

computations on the computational node of the cluster will be designated as TO. The computation organization

time consists of data transmission to the T1 node, the TS program start time and the data transmission time from

the T2 node.

The execution time of the entire job on the cluster is designated as TP. A problem of dimension S is divided

into M subtasks, each of which is assigned to a node.

Resource_2 bidding for auction 0 round 1 and price 4.6470160484313965

Resource_1 bidding for auction 0 round 1 and price 4.9272847175598145

Resource_3 bidding for auction 0 round 1 and price 8.039090156555176

Auction results

Winner ID: 9

Price for job execution 0: 4.6470160484313965

Fig. 2. The result of the job scheduling system modeling with the Dutch auc-

tion scheduling algorithm

Software Journal: Theory and Applications 2, 2021

 21

Subtask execution time is

 1 2 .
TP

t T T TS
M

= + + +

Then the job execution time on the cluster will be

 / 1 2 .
TP

T M N T T TS
M

 
=  + + + 

 

Probability of job completion on the computing node is denoted by P. In case if the subtask at the node is not

completed (with probability 1 – P), a restart is performed.

An incomplete subtask takes the following time

1 ,
TP

tf T TS TO
N

= + + +

where TO is the time it takes to detect a failure while executing a subtask. If M > N, then the execution occurs in

tiers according to the “master-slave” scheme. Tier execution time in case of unfinished jobs is the following:

1 max(1,).
min(,)

TP
T T TS T TO

M N
= + + +

The computing facility consists of L homogeneous clusters (C1, …, CL). Each cluster Ci has performance E (Ci)

when performing this job. The average cluster performance is:

1

()

.

L

i

k

m

E C

E
L

==



Normalized cluster performance is:

()
() .i

i

m

E C
E C

E
=

When splitting jobs for M subtasks, execution also takes place according to the scheme “master-slave”. In this

case, the number of tiers l is first selected, and then the problem is divided into l subtasks J1, ... Jl. Each Ji subtask

is divided into subtasks in proportion to the cluster performance so that the execution on each cluster is the same:

() .i i

S
Size E C

l L
= =



Further execution proceeds in the same way as on the cluster nodes. If the subtask ends abnormally (with

probability P(Ci)), the size of the remaining job is increased by Sizei and there is a redistribution already only

between the remaining clusters.

Let us consider a distributed computer network consisting of K computing devices (S1, ... Sk).

In this case, the execution is similar, except that the times T1 and T2 significantly depend on the CU, it should

be taken into account when choosing the size of the subtask.

There is a developed simulation program to determine numerical estimates for the optimal choice of the subtask

sizes at the level of parallel program execution for the equipment used with known a priori reliability. The program

determines the optimal number of subtasks depending on the expected number of failures per unit interval, the

maximum number of nodes used, and the overhead of organizing the execution of subtasks. The criterion for

optimality is the minimum execution time.

We consider two models. In the failure

event all jobs are restarted or only those

that have not completed. Modeling has

shown that in the case of absolute reliabil-

ity, if it is necessary to use the number of

subtasks with the maximum acceleration

factor (which is obvious), then with an in-

crease in the expected number of failures,

the optimal number of jobs decreases (Fig-

ure 3). So, with the optimal number of sub-

tasks equal to 1024 with absolute reliabil-

ity, while waiting for 0.2 failure on a unit

interval, the number of subtasks decreases

to 12 when restarting incomplete subtasks

and to 7 when starting all subtasks. A sim-

ulation program will be expanded for jobs

running time evaluation on CUs and a

GDNs.

Fig. 3. The dependence of the number of jobs on waiting for failure

1

10

100

1000

0,000,010,020,030,040,050,060,070,080,090,100,110,120,130,140,150,160,170,180,190,20

without restarts with restarts

Software Journal: Theory and Applications 2, 2021

 22

Conclusion

There are the following limitations of simulation platforms:

− high entry level,

− impossibility to reuse a model,

− complexity of the modeling platform installation,

− the need for a large number of resources,

− ease of use,

− insufficient examples,

− difficult choice of a simulator system.

The functionality of modeling and detecting failures in GridSim makes it possible to use this simulator to study

the reliability of a distributed system.

The authors are developing an alternative approach to studying the reliability of a whole distributed system as

well as its parts. The approach is to simulate job execution on a geographically distributed system with limited

reliability.

Acknowledgements: The reported study was funded by state assignment, project 0580-2021-0014 and RFBR,

projects no. 19-07-01088 and no. 18-29-03236. The research involved using the Supercomputer MVS-10P in-

stalled in JSCC RAS.

References

1. Legrand A.R., Casanova H., Marchal L. Scheduling distributed applications: The SimGrid simulation

framework. Proc. IEEE/ACM Intern. Symposium CCGrid, 2003, pp. 138–145. DOI: 10.1109/CCGRID.2003.

1199362.

2. Korsukov A.S. Automation of preparation and implementation of simulation modeling in an integrated

cluster system. Modern technologies. System analysis. Modeling, 2012, no. 3, pp. 98–103 (in Russ.).

3. Dias de Assunção M., Streitberger W., Eymann T., Buyya R. Enabling the simulation of service-oriented

computing and provisioning policies for autonomic utility grids. Proc. GECON. Lecture Notes in Computer Sci-

ence, 2007, vol. 4685, pp. 136–149. DOI: 10.1007/978-3-540-74430-6_11.

4. Jarvis S.A., Spooner D.P., Mudalige G.R., Foley B.P., Cao J. and Nudd G.R., Performance Evaluation of

Parallel and Distributed Systems, vol. 1, chap. Performance Prediction Techniques for Large-scale Distributed

Environments. Ould-Khaoua M. and Min G. (Eds.), Nova Sci., 2005, рр. 269-288.

5. Prajapati H.B., Shah V.A. Analysis perspective views of grid simulation tools. J. of Grid Computing, 2015,

vol. 13, no. 2, pp. 177–213. DOI: 10.1007/s10723-015-9328-9.

6. Argungu S.M., Arif S., Hasbullah O.M. Compute and data grids simulation tools: A comparative analysis.

In: Emerging Trends in Intelligent Computing and Informatics by Saeed F., Mohammed F., Gazem N., 2020, pp.

533–544. DOI: 10.1007/978-3-030-33582-3_50.

7. GridSim: A Grid Simulation Toolkit for Resource Modelling and Application Scheduling for Parallel and

Distributed Computing. Available at: http://www.buyya.com/gridsim/ (accessed April 22, 2021).

8. Simulation of Distributed Computer Systems. Available at: https://simgrid.org/ (accessed April 22, 2021).

9. CloudSim: A Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services.

Available at: http://www.cloudbus.org/cloudsim/ (accessed April 22, 2021).

10. Greencloud - The Green Cloud Simulator. Available at: https://greencloud.gforge.uni.lu/ (accessed April

22, 2021).

11. Caminero A., Sulistio A., Caminero B., Carrion C., Buyya R. Extending GridSim with an architecture for

failure detection. Proc. Intern. Conf. Parallel and Distributed Systems, 2007, pp. 1–8. DOI: 10.1109/ICPADS.

2007.4447756.

12. 12. Buyya R., Abramson D., Giddy J. Nimrod/G: An architecture for a resource management and schedul-

ing system in a global computational grid. Proc. IV Intern. Conf. and Exhibition on HPC in Asia-Pacific Region,

2000, vol. 1, pp. 283–289. DOI: 10.1109/HPC.2000.846563.

https://search.crossref.org/?q=10.1109%2FCCGRID.2003.1199362&from_ui=yes
https://search.crossref.org/?q=10.1109%2FCCGRID.2003.1199362&from_ui=yes
https://search.crossref.org/?q=10.1007%2F978-3-540-74430-6_11&from_ui=yes
https://search.crossref.org/?q=10.1007%2Fs10723-015-9328-9+&from_ui=yes
http://www.buyya.com/gridsim/
https://simgrid.org/
http://www.cloudbus.org/cloudsim/
https://greencloud.gforge.uni.lu/
https://search.crossref.org/?q=10.1109%2FICPADS.2007.4447756&from_ui=yes
https://search.crossref.org/?q=10.1109%2FICPADS.2007.4447756&from_ui=yes
https://search.crossref.org/?q=10.1109%2FHPC.2000.846563&from_ui=yes

Software Journal: Theory and Applications 2, 2021

 23

УДК 004.9

DOI: 10.15827/2311-6749.21.2.2

Моделирование надежности территориально распределенных вычислительных систем

А.И. Тихомиров 1, к.т.н., tema4277@rambler.ru

А.В. Баранов 1, к.т.н., Anton.Baranov@jscc.ru

П.Н. Телегин 1, к.т.н., pnt@jscc.ru

1 Межведомственный суперкомпьютерный центр Российской академии наук, Москва,119334, Россия

В статье представлен обзор актуальных платформ моделирования распределенных вычислительных

сетей. Осуществлен выбор платформы моделирования, обладающий необходимым функционалом для ис-

следования задачи отказоустойчивости системы управления заданиями распределенной сети, а также ис-

следования задачи планирования пользовательских заданий на территориально удаленные ресурсы рас-

пределенной сети. Исследован реализованный в платформе моделирования GridSim функционал для по-

строения модели распределенной сети. Реализованы две модели: для исследования задачи отказоустойчи-

вости системы управления заданиями распределенной сети, для исследования аукционных методов пла-

нирования пользовательских заданий на территориально удаленные ресурсы распределенной сети. Сфор-

мулированы достоинства недостатки моделирования распределенной сети. Предложен альтернативный

подход к моделированию, требующий меньших вычислительных ресурсов.

Ключевые слова: платформа моделирования, набор инструментов, моделирование распределённой

вычислительной сети, gridsim.

Благодарности. Работа выполнена в рамках государственного задания (тема 0580-2021-0014) и при

финансовой поддержке РФФИ, проекты № 19-07-01088 и 18-29-03236. В исследованиях использовался

суперкомпьютер МВС-10П, установленный в МСЦ РАН.

Литература

1. Legrand A.R., Casanova H., Marchal L. Scheduling distributed applications: The SimGrid simulation

framework. Proc. IEEE/ACM Intern. Symposium CCGrid, 2003, pp. 138–145. DOI: 10.1109/CCGRID.2003.

1199362.

2. Корсуков А.С. Автоматизация подготовки и проведения имитационного моделирования

в интегрированной кластерной системе // Современные технологии. Системный анализ. Моделирование.

2012. № 3. С. 98–103.

3. Dias de Assunção M., Streitberger W., Eymann T., Buyya R. Enabling the simulation of service-oriented

computing and provisioning policies for autonomic utility grids. Proc. GECON. Lecture Notes in Computer Sci-

ence, 2007, vol. 4685, pp. 136–149. DOI: 10.1007/978-3-540-74430-6_11.

4. Jarvis S.A., Spooner D.P., Mudalige G.R., Foley B.P., Cao J. and Nudd G.R., Performance Evaluation of

Parallel and Distributed Systems, vol. 1, chap. Performance Prediction Techniques for Large-scale Distributed

Environments. Ould-Khaoua M. and Min G. (Eds.), Nova Sci., 2005, рр. 269-288.

5. Prajapati H.B., Shah V.A. Analysis perspective views of grid simulation tools. J. of Grid Computing, 2015,

vol. 13, no. 2, pp. 177–213. DOI: 10.1007/s10723-015-9328-9.

6. Argungu S.M., Arif S., Hasbullah O.M. Compute and data grids simulation tools: A comparative analysis.

In: Emerging Trends in Intelligent Computing and Informatics by Saeed F., Mohammed F., Gazem N., 2020,

pp. 533–544. DOI: 10.1007/978-3-030-33582-3_50.

7. GridSim: A Grid Simulation Toolkit for Resource Modelling and Application Scheduling for Parallel and

Distributed Computing. URL: http://www.buyya.com/gridsim/ (дата обращения: 22.04.2021).

8. Simulation of Distributed Computer Systems. URL: https://simgrid.org/ (дата обращения: 22.04.2021).

9. CloudSim: A Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services.

URL: http://www.cloudbus.org/cloudsim/ (дата обращения: 22.04.2021).

10. Greencloud – The Green Cloud Simulator. URL: https://greencloud.gforge.uni.lu/ (дата обращения:

22.04.2021).

11. Caminero A., Sulistio A., Caminero B., Carrion C., Buyya R. Extending GridSim with an architecture for

failure detection. Proc. Intern. Conf. Parallel and Distributed Systems, 2007, pp. 1–8. DOI: 10.1109/ICPADS.

2007.4447756.

12. Buyya R., Abramson D., Giddy J. Nimrod/G: An architecture for a resource management and scheduling

system in a global computational grid. Proc. IV Intern. Conf. and Exhibition on HPC in Asia-Pacific Region, 2000,

vol. 1, pp. 283–289. DOI: 10.1109/HPC.2000.846563.

https://search.crossref.org/?q=10.1109%2FCCGRID.2003.1199362&from_ui=yes
https://search.crossref.org/?q=10.1109%2FCCGRID.2003.1199362&from_ui=yes
https://search.crossref.org/?q=10.1007%2F978-3-540-74430-6_11&from_ui=yes
https://search.crossref.org/?q=10.1007%2Fs10723-015-9328-9+&from_ui=yes
https://search.crossref.org/?q=10.1007%2F978-3-030-33582-3_50&from_ui=yes
http://www.buyya.com/gridsim/
https://simgrid.org/
http://www.cloudbus.org/cloudsim/
https://greencloud.gforge.uni.lu/
https://search.crossref.org/?q=10.1109%2FICPADS.2007.4447756&from_ui=yes
https://search.crossref.org/?q=10.1109%2FICPADS.2007.4447756&from_ui=yes
https://search.crossref.org/?q=10.1109%2FHPC.2000.846563&from_ui=yes

