Software Journal: Theory and Applications 2,2021

UDC 004.9
DOI: 10.15827/2311-6749.21.2.2

Modeling the reliability of geographically distributed computer systems

A.I Tikhomirov 1, Ph.D. (Engineering), tema4277@rambler.ru
A.V. Baranov 1, Ph.D. (Engineering), Anton. Baranov@jscc.ru
P.N. Telegin 1, Ph.D. (Engineering), pnt@jscc.ru

1 Joint Supercomputer Center of the Russian Academy of Sciences, Moscow, 119334,
Russian Federation

The paper presents an overview of platforms for simulation of distributed computing networks. The authors
have chosen a modeling platform that has the required functionality to study the problem of fault tolerance
of a distributed job management system, as well as to study the problem of scheduling user jobs for geographically
distributed resources. There is an investigation on the GridSim modeling platform for building a distributed net-
work model. Two models were implemented: one is for investigating fault tolerance of a distributed network job
management system problem, and the other one is for investigating auction methods for scheduling user jobs for
geographically distributed resources. The authors have formulated the advantages and disadvantages of distributed
network modeling. The paper presents an alternative approach requiring less computational resources.

Keywords: modeling platform, toolbox, distributed computing network modeling, GridSim.

With the increasing complexity of software and hardware systems used to implement a geographically distrib-
uted network of supercomputer centers (GDN), it is necessary to develop new methods allowing to adequately
reaching reliability and efficiency. Currently, the abstract models not based on specific hardware units are most
efficient for analyzing reliability. At the first design stage, these models make it possible to determine the optimal
reliability of logical subsystems. At the subsequent design stages, in order to move from abstract functional blocks
in the reliability model to more specific subsystems that can be brought to hardware and software implementation,
these logical subsystems should be considered in more detail. In other words, there is a problem of determining
the reliability of a parallel system consisting of a large number of elements.

The question of GDN efficiency is related to the task of scheduling user computing jobs for geographically
distributed computational resources. Like the task of assessing reliability, the task of assessing efficiency can be
solved using abstract functional blocks. However, the results will be of limited use, since most GDNs are charac-
terized by such basic properties as heterogeneity and non-expropriation of resources. These properties make the
task of evaluating effectiveness difficult.

Both problems can be solved using analytical and simulation methods. In analytical modeling, a distributed
network is represented as a queuing network. Optimizing the parameters of queuing networks is often a time-
consuming and resource-intensive job. Therefore, we used time-consuming analytical models.

Simulation modeling is the most efficient method for studying distributed networks, and sometimes it is prac-
tically the only available method for obtaining information about the network behavior, especially at the design
stage. Simulation modeling can use either a network layout, or a modeling platform. Creating a layout of a distrib-
uted network that simulates the real state as precisely as possible is a difficult and sometimes completely unsolv-
able task. Other members of the scientific community can rarely verify the results obtained using the simulation
model, and the model itself is rarely used for another research.

The use of a simulation modeling platform should reduce the time for developing a model and conducting an
experiment on the one hand, and should standardize the model building process on the other hand, which in turn
will allow verification and use of the results in other studies. Indeed, the modeling platform contains a set of
software tools for the network model description. Using these tools allows concentrating on exploring the model
characteristics. At the same time, it is reasonable to assume that the possibility of previously obtained results
reproduction will speed up new studies, as well as increase the efficiency of the existing ones.

The paper reviews existing modeling platforms for distributed networks. It also justifies the choice of a mod-
eling platform for the task of calculating GDN reliability and efficiency indicators.

Choosing a modeling platform

The paper [1] formulates a number of basic properties of the modeling platform, the implementation of which
guarantees its efficiency. First, the platform should provide usability, so that a researcher can focus on the study
of the problem being solved, and not on the issues of modeling a real system. Second, the launch of the model and
the simulation itself must be performed quickly, because the research process may require a large number of model
experiments. Third, an accurate (detailed) description of a real system requires that the modeling platform provide

15

Software Journal: Theory and Applications 2,2021

flexibility in setting, configuring, and possibility to add new model parameters without rebuilding the platform
implementation. Finally, the simulation platform must be scalable and support the ability to simulate tens of thou-
sands of resources and the same number of computational jobs.

Let us formulate the basic requirements for the simulation platform:

— the possibility to model the basic elements (storage resources, users, brokers, networks);

— the modeling speed that should significantly exceed the real system speed;

— the possibility to obtain modeling statistics for individual elements and for the operation of the model
as a whole;

— the comparability of the modeling results with the real situation;

— the possibility to simulate equipment malfunctions.

The requirements depend on the problem to be solved; this paper examines the problem of scheduling compu-
tational jobs for the GDN resources, therefore, as special requirements.

In addition to the basic ones, we will highlight special requirements that are important when studying the task
of scheduling jobs for GDN resources:

— the possibility to explore auction scheduling methods;

— the possibility to prioritize jobs;

— the possibility to simulate the real flow of jobs (real system log);

— the possibility to simulate background network traffic;

— the possibility to simulate the background load of computing resources (since non-expropriation resources
are being studied).

There are two classes of modeling platforms: emulators and simulators [2]. A simulator is software enabling
to model a real system, displaying part of the real phenomena and the properties in a virtual environment.
An emulator is a tool for reproducing the behavior of a device or a program in real time. In other words, an emulator
replaces the properties and functions of an original, doing real work, and a simulator only simulates these proper-
ties and functions without actually functioning. The best-known systems emulators are MicroGrid and Grid
eXplorer. The papers [3, 4] note that emulators have less flexibility in comparing scheduling algorithms. This is
primarily due to the lower speed of experiments in comparison with simulator systems, as well as the complexity
of reconfiguring a network model.

There is a large number of different simulation systems for simulating a distributed network. Simulators are
developed using different programming languages, have different architectures and assume different mechanisms
for describing and working with a model. This means that a network model prepared in one simulator cannot be
converted to a model in another simulator. In other words, there is no common standard for network modeling.
Most simulator systems are highly specialized, i.e. they should only be used to investigate specific characteristics
of the model, and that they include special tools that allow quick preparing of a model for investigating these
characteristics. The correct choice of the system allows describing the studied GDN model fast and in detail, and
concentrating on solving the Al specific problem. The paper [5] provides an extensive classification of simulator
systems according to various criteria including: the presence of a user interface for the simulator, a programming
language used to implement a model, an operating system that is required to run the simulator, a simulator software
architecture, etc. Most often, the classification of simulator systems is used in accordance with the type of a dis-
tributed network [6].

Table 1
Research area and simulator examples
Network type Field of study Examples
Computing network The efficiency of using various algorithms and e GridSim[7]
strategies for scheduling user jobs for distributed e SimGrid [8]
network resources
Data network The efficiency of various strategies for replication e OptorSim
and data retrieval in the data network e Monarc
e ChicSim
e GridNet
Service oriented network | The effectiveness of cloud services e CloudGrid [9]
e GreenCloud 10]
Communication network | The efficiency of algorithms for forwarding network e NS2
protocol packets. The efficiency of routing and e DaSSF
multicast over wired and wireless networks e OMNeT ++
e OPNET

16

Software Journal: Theory and Applications 2,2021

Table 2
Instruments and investigated characteristics
Network type Key tools of modeling The investigated characteristics
of the model
Computing network e basic scheduling algorithms e utilization of network resources
e auction methods e average job execution time
e topology toolkit e number of unfulfilled jobs
e policies and resource allocation
of compute nodes
Data network o data replication protocols e data access time
e strategies and algorithms for o disposal of storage
finding replica locations e network utilization

Service oriented network [e tools to simulate starting and no data
stopping virtual network resources

Communication network |e Basic routing algorithms (DropTail, |no data
RED, etc.)

o base of network protocols

o databases of models of network
devices provided by key manufacturers

This paper presents the choice of a modeling platform for studying various auction models and their parame-
ters, therefore, in the future, we will consider the first class of simulators — computer network simulators.
As already noted, the most well-known class simulation systems are GridSim and SimGrid.

There follows the description of the criteria for the comparison.

Table 3
Comparison of simulators
Simulator Year Basis Programming language Research area
GridSim 2002 |library SimJava2 |Java Economic scheduling methods [5]
S imGrid 1999 [Designed from the (C Working with custom jobs such as
ground up DAG (Directed acyclic graph) and MPI
(Message Passing Interface).

Both simulators are software libraries. The network model is created using a programming language. The com-
parison is be based on the following criteria.

1. Modeling heterogeneous network resources;

2. Modeling a heterogeneous communication environment with a complex topology;

3. Modeling different resource allocation policies. RR or BackFill can be used for uniprocessor it is FIFO, for
multiprocessors (cluster systems).

4. Modeling auction mechanisms for scheduling computational tasks for distributed resources. The simulator
must provide the appropriate abstractions (resource broker, auctioneer, bid, etc.) to implement auction methods;

5. Adding user-developed algorithms for scheduling jobs;

6. Simulation of load based on the logs, workload from supercomputers;

7. Modeling network resource failures [11];

8. Modeling background network traffic based on probabilistic distribution.

The disadvantage of both simulators is the lack of a graphical interface, which makes it possible to track the
process of the scheduling algorithms. For a graphical presentation of the results, all information can be output to
a file after simulating using the gnuplot utility.

Table 4 shows from that the GridSim simulator meets all the requirements most fully. It is important to note
that this simulator was used to simulate the Nimrod\G resource broker [12].

Modeling failures of distributed network resources in the GridSim simulator

The GridSim simulator has the functionality required to simulate computational failures. At the same time, it
is possible to simulate the failure of a part of the SuperComputing Unit (CU) computing resources and the failure
of the entire CU. The failure detection mechanism implemented in GridSim is based on sending periodic signals

17

Software Journal: Theory and Applications

2,2021

to the CU. Signals are sent both by the metascheduler in order to form a list of available computing resources, and

by users in order to control job execution (Fig. 1).

Table 4
Comparison of simulator functionality
Comparison criteria GridSIm SimGrid
Modeling heterogeneous resources + +
Modeling communication heterogeneous |+ -
environment
Modeling different resource allocation |There is There is
policies Already implemented: FCFS, order of arrival (FIFO) and its
RR and Backfil varieties | variations (FRFO)
Modeling auction mechanisms There are basic abstractions no
Adding custom algorithms possible
Modeling load baseon logs possible possible
Network failure simulation possible no data
Modeling background network traffic yes no data

Let us consider a job-scheduling scenario implemented in GridSim.
1. The user contacts the metascheduler to obtain the CU identifier with the available amount of computing

resources required to process the user task.

2. Having received the CU identifier, the user places the job in the local job management system (LIMS) of

this CU.

3. LIMS allocates for a job computational resources from among those available in accordance with t imple-

mented job-scheduling algorithm.

4. The user controls task execution periodically referring to the LIMS of the CU.
Let us consider the algorithms for the LIMS implemented in GridSim.

£30)
()

Metascheduler

Users

I
I
|
|
|
N
-
I
I
I
I

Local Job
Management System

Local Job Local Job

Management System

Management System

Supercomputing
unit 1

Supercomputing
unit 2

Supercomputing
unit 3

Fig. 1. Failure detection mechanism in distributed network
resources implemented in GridSim. Dashed lines shows how users
control the execution of the job by periodically polling the local
job control system of the CU, the metascheduler generates a list
of available resources also periodically polling the local
job control system

— a scheduling algorithm in order of re-
ceipt (FIFO);

— a cyclic scheduling algorithm (RR,
Round Robin).

The main difference between the pre-
sented scheduling algorithms for LIMS is
processing of emerging failures on CU re-
sources. In the case of resource failure, the
jobs allocated by the FIFO scheduling al-
gorithm immediately terminate abnormally
and receive the corresponding error code.
The RR cyclic scheduling algorithm reallo-
cates jobs whose resources are faulty to
other available resources within the same
CU. In other words, unlike the FIFO algo-
rithm, the cyclical scheduling algorithm
does not rigidly fix computational re-
sources for a specific task. If there are no
available resources, then the users of these
tasks will receive the corresponding error
codes as in the previous case.

Both LIMS scheduling algorithms will
work in the same way in the event of a mal-
function of all the resources of the CU,
namely, all tasks processed in this CU will
terminate abnormally with the correspond-
ing error code. Note that the realistic be-

havior in GDN would be not to assign an error code to an abnormally terminated job, since the entire CU is out of
order and is inaccessible. However, in GridSim, the absence of a job completion code will lead to endless user
waiting for the job to complete. Let us describe the main parameters of the considered model with failures:

18

Software Journal: Theory and Applications 2,2021

Job parameters:

— the number of jobs: 50;

— the duration of each job (million instructions): 42,000,000;

— the volume of initial data/results (bytes): 100000.

— each job requires 2 CUs to complete.

Computing resource parameters:

— the number of CUs: 3;

— the number of computing modules (CM) in each CU: 10;

— the number of processors in each CU: 2;

— performance of each processor (millions of instructions per second): 50,000;

— acyclic scheduling algorithm is selected as the LIMS algorithm;

The main characteristics of failure modeling are the number of VMs on which the failure occurred, the failure
time and duration. In our experiment, all these parameters were set by a hyperexponential distribution with the
following characteristics (mean, standard deviation, flow):

— the number of failed VMs (number of VMs/2, number of VMs, 4);

— the failure time (25, 100, 4);

— the failure duration (20, 25, 4).

Test results are displayed in text format and can be saved to a file. Table 5 shows just a part of the output of
the simulation results, since the output of all simulation statistics takes up a lot of space.

Table 5
The results of modeling the fault tolerance of the system
Job ID Job completion ID of the resource Cost Job execution | Time to receive
status that ran the job time the job result

0 Success 85 2571.87 857.29 862.04
4 Success 40 2572.47 857.49 862.42
1 Success 85 2572.32 857.44 864.81
2 Success 90 2574.00 858.00 874.86
3 Success 90 2572.65 857.55 880.7

Modeling a system for scheduling user jobs for geographically distributed resources of a distributed network

In addition to modeling failures, the GridSim simulator has functionality that allows exploring the work
of different algorithms for scheduling user jobs. The toolkit available in the simulator allows flexible describing
of the computational and communication resources that are a part of the studied GDN model. For example, differ-
ent computing resources can have different cost of use, performance, architecture, operating system, resource al-
location policy: total time or space, time zone, etc. Each simulated resource must be connected to a router.

Users who submit the jobs on computing resources can be simulated with different application or quality of
service requirements. These requirements include the network data transfer rate (connection speed), the maximum
time allowed for a job to start, the time lag between job submissions, and a scheduling strategy such as optimizing
costs and/or time to complete jobs. Economic requirements (deadline and budget) can be set for each user, which
restricts the job execution. For example, a user may be simulated willing to spend as much money as required,
or a user willing to spend the exact amount.

The simulated jobs, in turn, are characterized by the duration of execution (in millions of instructions),
the amount of input and output data (in bytes).

In the studied example, the authors model a network with homogeneous resources, all of them have the same
performance. Two supercomputer centers (SCC) are modeled. The supercomputer center includes 3 computing
units, each has a configuration of 100 processors. Each processor in the computational unit is rated at 1000 MIPS.
The following numbers of users were simulated: 100, 200, and 300. Each user created 100 jobs, each job required
one processor to execute. The size of the each job initial data is 600 MB, the output data is 300 MB, the processing
time varied during the experiment.

The Dutch auction was used as an algorithm for scheduling computational jobs for remote resources.
The auction scheduling algorithm assumes competition of participants for the right to use resources; during com-
petition, the cost of using resources is determined. The Dutch auction is an auction for a decrease, the auctioneer
starts the auction with a knowingly high price, after which he begins to lower the bid. When only one member is
ready to buy an item, the item is sold. Our experiment had the established characteristics of the Dutch auction: the
maximum round duration was 1 minute, and the maximum number of rounds was 10.

The parameters of the computational resources and the parameters of the jobs of the model under study were
set as in the previous experiment. No background network traffic was modeled. The background loading of the
resources of the computing unit was not modeled. As in the previous case, the simulation result was presented in
text format, due to its cumbersomeness. Figure 2 shows only a part of the simulation results.

19

Software Journal: Theory and Applications 2,2021

fA'E’O“tI t:‘.e bOLI‘”gary Resource_2 bidding for auction 0 round 1 and price 4.6470160484313965
ot simulation plattorms Resource_1 bidding for auction 0 round 1 and price 4.9272847175598145
Resource_3 bidding for auction 0 round 1 and price 8.039090156555176

We can formulate the fol- .
Auction results

lowing limitations of the simu-

. Winner ID: 9
lation platforms from the con- . : .
ductedpresearch: Price for job execution 0: 4.6470160484313965

L High entry level. Onthe | Fig. 2. The result of the job scheduling system modeling with the Dutch auc-
one hand, simulators are versa- tion schedulina algorithm

tile, since they allow supple-
menting the model with custom parameters. On the other hand, the researcher needs to spend a lot of time to
understand the simulator structure and must have knowledge and programming skills using specific programming
languages. In addition to knowing the programming language, the user must understand how to work correctly
with platform abstractions. All this significantly increases the entry threshold. It takes a long time from the moment
an idea appears to the first model close to the real one.

2. No model reuse. The user must implement most of the scheduling algorithms on his own using a program-
ming language; this is a source of errors. It would simplify a single model space in which users could place their
models and implemented algorithms. It is reasonable to assume that the ideas of the open source community would
improve the quality of the models. The examples of such platforms are: Vagrant Cloud, Docker Hub, GitHub.
These examples demonstrate users’ ability to use or improve the ideas of other users, which significantly saves
time and allows getting new ideas (a user does not need to spend time studying a large amount of documentation,
but simply finds a similar problem and tries to use the idea).

3. Installation and initial configuration complexity. To work with the simulator, it is necessary to install and
configure compilers (gcc in our case) or virtual machines (jvm in the example). It also raises the entry barrier.
Using modeling tools in the cloud would also make them easier to use.

4. Large volume of resources. The performed experiment requires a large volume of computing resources to
simulate a real network.

5. Ease of use. Modeling tools have no familiar interactivity; most of them do not have a graphical interface.
The user can visualize the results only after finishing modeling using third-party visualization utilities. While in
some studies, for example, comparing different scheduling algorithms, visualization of the algorithm is of interest.

6. Lack of examples. The documentation of most simulators is compiled according to the rules for describing
a programming language library. However, it does not contain a large number of examples.

7. Complexity of choosing a simulator system. Before starting to use the simulator, the user should spend
a lot of time studying and choosing the simulator from a large number of existing solutions. The decision choice
can be based only on the analysis of scientific articles, since there is no sufficient information on the site.

The listed disadvantages have a negative impact on such properties of the modeling platform as usability and
ease of model configuration. The low-level implementation of the scheduling algorithms is a source of errors, and
the lack of open space for the exchange of models in the scientific environment limits the applicability of modeling
platforms.

At the same time, the functionality available in GridSim for modeling and detecting failures that have occurred
makes it possible to use this simulator to study distributed system reliability. The set of standard scheduling algo-
rithms implemented in GridSim, can be supplemented with other scheduling algorithms if necessary.

Due to the limitations of simulation platforms, an alternative approach is also being developed to determine
the numerical parameters of program execution.

Determining the numerical reliability parameters

We consider the problem of determining the optimal choice of the sizes of subtasks when executing programs
with parallelization according to data with a known a priori equipment reliability.

The job is divided into M subtasks, which are executed on N computing nodes of one or more computing
systems. Each node receives a data “chunk”, processes it and sends the results.

The nodes are combined into clusters. A set of clusters within a single computing center forms a computing
facility. Computing installations in different computing centers are aggregated into a geographically distributed
network.

A computing cluster contains N identical nodes (U, ... Un).

The probability of the job completion at the computing node i will be denoted as P (U;). The time of organizing
computations on the computational node of the cluster will be designated as TO. The computation organization
time consists of data transmission to the T1 node, the TS program start time and the data transmission time from
the T2 node.

The execution time of the entire job on the cluster is designated as TP. A problem of dimension S is divided
into M subtasks, each of which is assigned to a node.

20

Software Journal: Theory and Applications 2,2021

Subtask execution time is

t= -:;/I—P+T1+T2+TS.

Then the job execution time on the cluster will be

T=[M /N]-[T'\A—P+T1+T2+Ts).

Probability of job completion on the computing node is denoted by P. In case if the subtask at the node is not

completed (with probability 1 — P), a restart is performed.
An incomplete subtask takes the following time

tf = %+T1+TS +TO,

where TO is the time it takes to detect a failure while executing a subtask. If M > N, then the execution occurs in
tiers according to the “master-slave” scheme. Tier execution time in case of unfinished jobs is the following:
TP

" min(M, N)
The computing facility consists of L homogeneous clusters (Cy, ..., Ci). Each cluster C; has performance E (C;)

when performing this job. The average cluster performance is:
L

> E(C)
E =Xt
" L
Normalized cluster performance is:
~ E(C)
E(C)=—".
(<) =

m

+T1+TS + max(TLTO).

When splitting jobs for M subtasks, execution also takes place according to the scheme “master-slave”. In this
case, the number of tiers I is first selected, and then the problem is divided into I subtasks Ji, ... Ji. Each J;i subtask
is divided into subtasks in proportion to the cluster performance so that the execution on each cluster is the same:

. ~ S

Size; =E(C)) L

Further execution proceeds in the same way as on the cluster nodes. If the subtask ends abnormally (with
probability P(Cj)), the size of the remaining job is increased by Size; and there is a redistribution already only
between the remaining clusters.

Let us consider a distributed computer network consisting of K computing devices (Ss, ... Sk).

In this case, the execution is similar, except that the times T1 and T2 significantly depend on the CU, it should
be taken into account when choosing the size of the subtask.

There is a developed simulation program to determine numerical estimates for the optimal choice of the subtask
sizes at the level of parallel program execution for the equipment used with known a priori reliability. The program
determines the optimal number of subtasks depending on the expected number of failures per unit interval, the
maximum number of nodes used, and the overhead of organizing the execution of subtasks. The criterion for
optimality is the minimum execution time.

We consider two models. In the failure
1000 event all jobs are restarted or only those
that have not completed. Modeling has
shown that in the case of absolute reliabil-
ity, if it is necessary to use the number of
subtasks with the maximum acceleration
factor (which is obvious), then with an in-
crease in the expected number of failures,
the optimal number of jobs decreases (Fig-
ure 3). So, with the optimal number of sub-
tasks equal to 1024 with absolute reliabil-
0,000,010,020,030,040,050,060,070,080,090,100,110,120,130,140,150,160,170,180,190,20 ity1 while Waiting for 0.2 failure on a unit
interval, the number of subtasks decreases
without restarts emmmmmwith restarts to 12 when restarting incomplete subtasks
and to 7 when starting all subtasks. A sim-
)) o) ulation program will be expanded for jobs
Fig. 3. The dependence of the number of jobs on waiting for failure running time evaluation on CUs and a

GDNs.

100

10

1

21

Software Journal: Theory and Applications 2,2021

Conclusion

There are the following limitations of simulation platforms:

— high entry level,

— impossibility to reuse a model,

— complexity of the modeling platform installation,

— the need for a large number of resources,

— ease of use,

— insufficient examples,

— difficult choice of a simulator system.

The functionality of modeling and detecting failures in GridSim makes it possible to use this simulator to study
the reliability of a distributed system.

The authors are developing an alternative approach to studying the reliability of a whole distributed system as
well as its parts. The approach is to simulate job execution on a geographically distributed system with limited
reliability.

Acknowledgements: The reported study was funded by state assignment, project 0580-2021-0014 and RFBR,
projects no. 19-07-01088 and no. 18-29-03236. The research involved using the Supercomputer MVS-10P in-
stalled in JSCC RAS.

References

1. Legrand A.R., Casanova H., Marchal L. Scheduling distributed applications: The SimGrid simulation
framework. Proc. IEEE/ACM Intern. Symposium CCGrid, 2003, pp. 138-145. DOI: 10.1109/CCGRID.2003.
1199362.

2. Korsukov A.S. Automation of preparation and implementation of simulation modeling in an integrated
cluster system. Modern technologies. System analysis. Modeling, 2012, no. 3, pp. 98-103 (in Russ.).

3. Dias de Assun¢do M., Streitberger W., Eymann T., Buyya R. Enabling the simulation of service-oriented
computing and provisioning policies for autonomic utility grids. Proc. GECON. Lecture Notes in Computer Sci-
ence, 2007, vol. 4685, pp. 136-149. DOI: 10.1007/978-3-540-74430-6_11.

4. Jarvis S.A., Spooner D.P., Mudalige G.R., Foley B.P., Cao J. and Nudd G.R., Performance Evaluation of
Parallel and Distributed Systems, vol. 1, chap. Performance Prediction Techniques for Large-scale Distributed
Environments. Ould-Khaoua M. and Min G. (Eds.), Nova Sci., 2005, pp. 269-288.

5. Prajapati H.B., Shah V.A. Analysis perspective views of grid simulation tools. J. of Grid Computing, 2015,
vol. 13, no. 2, pp. 177-213. DOI: 10.1007/s10723-015-9328-9.

6. Argungu S.M., Arif S., Hasbullah O.M. Compute and data grids simulation tools: A comparative analysis.
In: Emerging Trends in Intelligent Computing and Informatics by Saeed F., Mohammed F., Gazem N., 2020, pp.
533-544. DOI: 10.1007/978-3-030-33582-3_50.

7. GridSim: A Grid Simulation Toolkit for Resource Modelling and Application Scheduling for Parallel and
Distributed Computing. Available at: http://www.buyya.com/gridsim/ (accessed April 22, 2021).

8. Simulation of Distributed Computer Systems. Available at: https://simgrid.org/ (accessed April 22, 2021).

9. CloudSim: A Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services.
Available at: http://www.cloudbus.org/cloudsim/ (accessed April 22, 2021).

10. Greencloud - The Green Cloud Simulator. Available at: https://greencloud.gforge.uni.lu/ (accessed April
22, 2021).

11. Caminero A., Sulistio A., Caminero B., Carrion C., Buyya R. Extending GridSim with an architecture for
failure detection. Proc. Intern. Conf. Parallel and Distributed Systems, 2007, pp. 1-8. DOI: 10.1109/ICPADS.
2007.4447756.

12.12. Buyya R., Abramson D., Giddy J. Nimrod/G: An architecture for a resource management and schedul-
ing system in a global computational grid. Proc. IV Intern. Conf. and Exhibition on HPC in Asia-Pacific Region,
2000, vol. 1, pp. 283-289. DOI: 10.1109/HPC.2000.846563.

22

https://search.crossref.org/?q=10.1109%2FCCGRID.2003.1199362&from_ui=yes
https://search.crossref.org/?q=10.1109%2FCCGRID.2003.1199362&from_ui=yes
https://search.crossref.org/?q=10.1007%2F978-3-540-74430-6_11&from_ui=yes
https://search.crossref.org/?q=10.1007%2Fs10723-015-9328-9+&from_ui=yes
http://www.buyya.com/gridsim/
https://simgrid.org/
http://www.cloudbus.org/cloudsim/
https://greencloud.gforge.uni.lu/
https://search.crossref.org/?q=10.1109%2FICPADS.2007.4447756&from_ui=yes
https://search.crossref.org/?q=10.1109%2FICPADS.2007.4447756&from_ui=yes
https://search.crossref.org/?q=10.1109%2FHPC.2000.846563&from_ui=yes

Software Journal: Theory and Applications 2,2021

YK 004.9
DOI: 10.15827/2311-6749.21.2.2

MoaennpoBaHue Haie;KHOCTH TEPPUTOPHAIBHO pacnpee/IeHHbIX BbIYMCIUTEeNbHBIX CHCTEM

AHU. Tuxomupos *, x.m.n., tema4277@rambler.ru
A.B. Bapanoe *, x.m.n., Anton.Baranov@jscc.ru
ILH. Tenezun ', x.m.n., pnt@jscc.ru

! Meacsedomemeennniii cynepxomnviomepuwiti yenmp Poccuiickoti axademuu nayx, Mockea, 119334, Poccus

B cratee mpencraBieH 0030p akTyalbHbBIX IIAT(HOPM MOJECTHPOBAHHS PACHPEICICHHBIX BBIYUCIUTEIBHBIX
ceteit. OcymecTBICH BEIOOP MIIaTHOPMBI MOJESTHPOBAHHUS, 00IaNAI0NIHHA HEOOXOIMMBIM (DYHKIIHOHAIIOM JIJISI HC-
CJIC/IOBAHUSI 3aJIa4¥ OTKa30yCTONYMBOCTH CHCTEMBI YIIPABICHUS 33/IaHUSMK pacIipeie]ICHHON CETH, a TaKkKe HC-
CJIC/IOBAHUSl 331a4M TUIAHWPOBAHUS IOJIb30BATENBCKUX 3a/laHUH HA TEPPUTOPHUANBLHO YAalEeHHbIE PECYPChl pac-
npezeneHHoi cetu. VccnenoBan peann3oBaHHbIN B miaTdopme MoaenupoBanus GridSim ¢yHKIMOHAT 11 110-
CTPOEHHMSI MOJIEJIU PACIIPE/ICIIEHHOM ceTH. Peann3oBaHbl 1Be MOAENH: JUIs HCCIICOBAHUS 33141 OTKa30yCTONYH-
BOCTU CUCTEMBI YIIPAaBJICHUA 3aaHUAMU pacnpez[eneHHoﬁ CCTH, JId UCCICAOBAHUA ayKIITMOHHBIX MECTOJOB IlJIa-
HHUPOBAHMS T10JIb30BATENILCKHUX 33JJaHUIl HA TEPPUTOPHUAIIBHO YAalIeHHbIE pecypchl pacnpeneneHnoi cetu. Cop-
MYJIMPOBaHBl JOCTOMHCTBA HEAOCTAaTKH MOJEIHPOBAHMS PACHPENCICHHONW ceTh. [Ipe/uioskeH aabTepHaTHBHBIN
MOAXOA K MOAEIHPOBAHHUIO, TPEOYIONIMH MEHBIINX BHIYHUCIHTEIBHBIX PECYPCOB.

Knrwoueegvie cnoea: niamgopma mooenuposanus, HAOOp UHCMPYMEHMO8, MOOEIUPOSaHUe pacnpedeéHHoll
8LIUUCIUMENbHOU cemu, gridsim.

Brazooapuocmu. Paboma gvinonnena 6 pamxax 2ocyoapcmeenno2o 3adanust (mema 0580-2021-0014) u npu
@unarncosou nodoepicke POOU, npoexmor Ne 19-07-01088 u 18-29-03236. B uccre0osanusix ucnonvb3o8ancs
cynepxomnviomep MBC-10I1, ycmanoenennviii ¢ MCL] PAH.

Jlumepamypa

1. Legrand A.R., Casanova H., Marchal L. Scheduling distributed applications: The SimGrid simulation
framework. Proc. IEEE/ACM Intern. Symposium CCGrid, 2003, pp. 138-145. DOI: 10.1109/CCGRID.2003.
1199362.

2. KOpCYKOB A.C. ABTOMaTI/ISaL{I/Iﬂ MNOATOTOBKM W INPOBEACHUA HWMHUTALMOHHOTO MOACIUPOBAHUA
B HHTECTPHPOBAaHHOHN KiacTepHO# cucteme // CoBpeMeHHbIe TeXHOIOTHH. CHCTeMHBIH aHanmm3. MoaenmupoBaHue.
2012. Ne 3. C. 98-103.

3. Dias de Assun¢do M., Streitberger W., Eymann T., Buyya R. Enabling the simulation of service-oriented
computing and provisioning policies for autonomic utility grids. Proc. GECON. Lecture Notes in Computer Sci-
ence, 2007, vol. 4685, pp. 136-149. DOI: 10.1007/978-3-540-74430-6_11.

4. Jarvis S.A., Spooner D.P., Mudalige G.R., Foley B.P., Cao J. and Nudd G.R., Performance Evaluation of
Parallel and Distributed Systems, vol. 1, chap. Performance Prediction Techniques for Large-scale Distributed
Environments. Ould-Khaoua M. and Min G. (Eds.), Nova Sci., 2005, pp. 269-288.

5. Prajapati H.B., Shah VV.A. Analysis perspective views of grid simulation tools. J. of Grid Computing, 2015,
vol. 13, no. 2, pp. 177-213. DOI: 10.1007/s10723-015-9328-9.

6. Argungu S.M., Arif S., Hasbullah O.M. Compute and data grids simulation tools: A comparative analysis.
In: Emerging Trends in Intelligent Computing and Informatics by Saeed F., Mohammed F., Gazem N., 2020,
pp. 533-544. DOI: 10.1007/978-3-030-33582-3_50.

7. GridSim: A Grid Simulation Toolkit for Resource Modelling and Application Scheduling for Parallel and
Distributed Computing. URL: http://www.buyya.com/gridsim/ (zata o6pamenus: 22.04.2021).

8. Simulation of Distributed Computer Systems. URL: https://simgrid.org/ (nata o6pamenus: 22.04.2021).

9. CloudSim: A Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services.
URL.: http://www.cloudbus.org/cloudsim/ (nata o6pamenus: 22.04.2021).

10. Greencloud — The Green Cloud Simulator. URL: https://greencloud.gforge.uni.lu/ (nara oOpamenust:
22.04.2021).

11. Caminero A., Sulistio A., Caminero B., Carrion C., Buyya R. Extending GridSim with an architecture for
failure detection. Proc. Intern. Conf. Parallel and Distributed Systems, 2007, pp. 1-8. DOI: 10.1109/ICPADS.
2007.4447756.

12.Buyya R., Abramson D., Giddy J. Nimrod/G: An architecture for a resource management and scheduling
system in a global computational grid. Proc. 1V Intern. Conf. and Exhibition on HPC in Asia-Pacific Region, 2000,
vol. 1, pp. 283-289. DOI: 10.1109/HPC.2000.846563.

23

https://search.crossref.org/?q=10.1109%2FCCGRID.2003.1199362&from_ui=yes
https://search.crossref.org/?q=10.1109%2FCCGRID.2003.1199362&from_ui=yes
https://search.crossref.org/?q=10.1007%2F978-3-540-74430-6_11&from_ui=yes
https://search.crossref.org/?q=10.1007%2Fs10723-015-9328-9+&from_ui=yes
https://search.crossref.org/?q=10.1007%2F978-3-030-33582-3_50&from_ui=yes
http://www.buyya.com/gridsim/
https://simgrid.org/
http://www.cloudbus.org/cloudsim/
https://greencloud.gforge.uni.lu/
https://search.crossref.org/?q=10.1109%2FICPADS.2007.4447756&from_ui=yes
https://search.crossref.org/?q=10.1109%2FICPADS.2007.4447756&from_ui=yes
https://search.crossref.org/?q=10.1109%2FHPC.2000.846563&from_ui=yes

