
Software Journal: Theory and Applications 2, 2021

 1

UDC 004.421:004.832.24

DOI: 10.15827/2311-6749.21.2.1

Determining the Location of Players in Virtual Soccer

D.A. Petrunenko 1, Student, nokiad_1999@mail.ru

S.A. Belyaev 1, Ph.D. (Engineering), Associate Professor, bserge@bk.ru

1 Saint Petersburg Electrotechnical University "LETI", St. Petersburg, 197376,
Russian Federation

The paper considers solving the problem of localization of players in virtual soccer. The authors use the Ro-

boCup 2D Soccer Simulation League international competition platform as a medium for conducting experiments.

The location information of objects in the field is important for deciding–it is necessary to find players in condi-

tions of both complete and insufficient information. Using previous states and predicting actions for recently hid-

den objects can improve the accuracy of the projected growth of the situation in the field.

The authors reviewed existing solutions for the localization of players and developed a new algorithm.

If the initial information suffices to calculate the player's coordinates, we use the Kalman filter, and if the infor-

mation is insufficient, we use the inertial navigation algorithm based on known previous states. The paper describes

an approach to predicting the players' location that has recently disappeared from view, considers the mathematical

model of the algorithm, and designs the architecture of the software solution. Several actual players in the virtual

soccer environment tested the developed solution. We show the results as graphs of mathematical expectation and

dispersion and confirm the predictability of the location of recently disappeared objects, calculating the coordinates

of the player in various conditions.

The obtained results determine the directions for further research on forecasting based not only on previous

states but also on the logic of players' decisions. The next step is to integrate the developed program into the

decision-making system for joint verification during the competition.

Keywords: intelligent agents, virtual soccer, multi-agent systems, positioning under uncertainty, Kalman filter,

inertial navigation.

Currently, artificial intelligence is surging. Some platforms are designed for scientific research in the field of

artificial intelligence (for example, Gym OpenAI, GVGAI), others are for competitions (RoboCup 2D Soccer

Simulation League Champion [1], RoboCup Rescue Simulation [2]). Simulation in virtual soccer is used for re-

search, development, and comparison of multi-agent systems, to simplify this process, it is possible to use Soccer

Simulation [3], which provides the suitable tools.

The environment of virtual soccer is very dynamic and can well simulate the conditions of the real world.

In particular, they assumed full autonomy of the player management programs and the provision of visual and

audio information to the players with a predetermined error and distance restrictions. Various methods are used to

control and position players: using decision trees, which form options for further actions based on the current state

(tree node) and input data [4, 5], using random finite sets [4, 6], the Monte Carlo method [4, 7], fuzzy automata

[8], probabilistic automata [9], convolutional neural networks [1, 4, 10].

Decision-making can be based only on the current state of the world or on several previous states. At the same

time, an agent that considers the previous states will act more efficiently and therefore win against a player who

decides to consider only one state. Planning actions based on the change history in the situation is important when

creating intelligent agents. Action planning involves predicting changes in the field situation, considering the ac-

tions that can be performed in the situation created. The prediction can be carried out based on both incoming data

and change, along with updated information at each clock cycle [7], and the formed model with its gradual refine-

ment [11]. We consider information about visible objects in both cases, but for objects that were recently in vision

and then disappeared from it, the behavior is unknown. Considering their behavior will significantly enrich the

model and improve the accuracy of predicting the development of the situation in the field.

We should note that in the conditions of virtual soccer, the coordinates of the player are also unknown – we

calculate them based on the visible flags placed around and on the playing field. This problem is not always solved

unambiguously since the information is provided to the control program with some error [12].

Problems' Solutions

The virtual soccer platform provides noise for the data arriving to players from the visual sensor, which imposes

restrictions on how to solve the problem. We can apply the algorithms specified below.

1. Navigate by the nearest flag and the farthest line.

Calculations are performed based on the trigonometric formulas-the static point in the field closest to the agent

is selected (the midfield, the team's goal, the four areas in front of the goal, to the right and left of them, the area

Software Journal: Theory and Applications 2, 2021

 2

directly in front of the goal) and the far visible line of the

field boundary (Fig. 1). Using the angle calculated by the for-

mula: β = –sin(α)(90 –|α|), where α – the angle at which the

line is visible, and the available absolute coordinates of the

flag, the agent calculates its real coordinates [13]:

(px, py) = (fx, fy) – π(fr, fφ + (90 + β)), where fx, fy, fr, fφ –

the x and y coordinates of the flag, as well as the distance to

it and the angle at which the flag is visible, respectively;

π is the function of converting polar coordinates to Cartesian

coordinates.:

π(r, φ) = (rcos(φ), rsin(φ)).

2. Navigate by the two nearest flags and the farthest line.

Calculations for this method are based on trigonometric

formulas using the two static points closest to the agent

in the field (the midfield, the team goal, the four areas in front

of the goal, to the right and left of them, the area directly in

front of the goal) and the far line (Fig. 2). The distance to the

flag and its coordinates define a circle of possible positions,

and the intersection of the two circles determines the

player's position. The distance between flags (f, g):

2 2() () .d gx fx gy fy= − + −

Calculating the player absolute coordinates [13]:

(px, py) = (px’ – h sign sin(α), py’+ h sign cos(α)),

where (px’, py’) = (fx + a cos (α), fy + a sin (α)),

sin (α) =
y

d
, cos(α) =

x

d

3. Navigation using the particle filter.

The particle filter is a method for determining the abso-

lute coordinates of a player, according to which a set of hy-

potheses about their current values is created to estimate the

coordinates. The algorithm for determining the absolute co-

ordinates based on the particle filter includes the following

steps.

Step 1. Initialization-getting information about the first step of the work, while generating hypotheses ran-

domly.

Step 2. Prediction-guess the player's location based on the information received from the server.

Step 3. Correction-calculation of the weight coefficients, and before this calculation, the particles are filtered

out by calculating the upper and lower bounds of the hypotheses (particles that are not included in the range are

removed) and re-sampling – removing hypotheses with low weight and duplicating hypotheses with high weight.

Step 4. State estimation-calculation of absolute coordinates as the weighted sum of all particles' states [13, 14].

4. Navigation using the Kalman filter.

The method allows you to get an estimate of the object's state vector (in this case, the player's coordinates)

based on a series of noisy measurements. It implemented the solution in several steps.

Step 1. Post-information analysis received from the visual sensor (information from the server). If you have

saved data, you can skip the parsing step and focus on the analysis.

Step 2. Cyclic processing of all possible pairs-iterating over all pairs of visible flags and calculating the absolute

coordinates from these flags.

Step 3. Calculation of the sensor error variance – the primary stage at which the quality of this method is

determined:
2(max min)2

1 12

r r

i


−
=

+
, where rmax and rmin are the maximum and minimum possible distance val-

ues; 𝜎^2 is the error dispersion.

Step 4. Update the value of the Kalman gain (K), considering the resulting dispersion. The coefficient value

must provide the maximum proximity of the calculated optimal values of the absolute coordinates to their true

values:

2

2 2
1

iK

i i



 
=

+
+

.

Step 5. Correction using the Kalman coefficient of the estimated value of the absolute coordinates of the agent

in this iteration: xi+1= xi*K+(1 – K)*(xi+ Δx), yi+1 = yi*K+(1– K)*(yi + Δy), where Δx, Δy is the expected change in

coordinates.

Fig. 1. The feature algorithm «Navigation

by the nearest flag and the farthest line»

Fig. 2. The feature algorithm «Navigation

by the two nearest flags and the farthest line»

Software Journal: Theory and Applications 2, 2021

 3

Thus, the real coordinates of the player are calculated [13–15].

5. Monte Carlo method and Data aggregation.

The method is based on a combination of Monte Carlo search and data aggregation (MCSDA) [7] to adapt the

agent's actions to the opposing team's game strategies. Using a simple domain representation, the algorithm is

trained in a controlled way on an initial data set comprising several simulations of actual games, similar to [16].

The method allows you to control navigation and helps in deciding in the field. The algorithm uses a set of state-

action pairs as input. Then the classifier ^π is trained, and at each iteration, the algorithm expands its data set ~π

by generating the state st at each time step, with the expected value maximized by the function Vp (st, a). After the

entire cycle, the aggregated data set is used to train a new classifier ~π (Fig. 3).

6. Random finite sets method

The method provides the map construction of robot movements using random finite sets (RFS) [6]. It is applied

to the assessment problem of the teammate and opponent position in the SPL League and comprises two steps.

Step 1. Prediction-creating hypotheses about the appearance of new obstacles for the next cycle of work.

Step 2. Update-calculation of the discoverability of new obstacles at a given point, after which there are the

operations of pruning and merging elements (Gaussians that are determined close enough, through the Mahalano-

bis distance threshold, are combined into one).

Figure 4 shows the pseudocode of the algorithm.

This algorithm is used to calculate obstacle maps in visible space. To get the position of an object in the field,

you need to estimate the weight of each element. The mean vector sets if and added to the vector representing

the current map (Figure 5).

7. The concept of constructing the intelligent real-time agents based on the model of advanced iterative

planning.

For decision-making by players, the concept of constructing a model of advanced iterative planning

is used [10]. The steps are generalized since because of the exponential growth of the trees of possible events,

accurate prediction is not possible. The calculation cycle includes the following steps.

Step 1. Getting sensory information from the perception subsystem.

Step 2. Assess the situation.

Step 3. Predicting the situation.

Step 4. Planning the actions.

Step 5. Issuing commands to the executive subsystem to perform actions.

Figure 6 shows the pseudocode of the method.

The presented algorithms and methods can be compared according to the following criteria:

- the volume of information stored in the algorithm's memory;

- algorithm goal;

- type of algorithm;

- computational error of locations (in virtual soccer, measured in meters).

begin

 Training of the classifier P(ˆπ) on the expert data set De.

 P1 ← classifier training ().

 Initialization D ←De.

 for i = 1 to N do

 Initialization s0 ←init(D.

 for t = 1 to T do

Getting st states from the previous classifier state Pi−1(st−1).

 A ← select possible actions from st (if necessary).

 foreach a ∈ A do

 Performing K simulations using the Monte Carlo method of length K to evaluate states

 Vp(st, a).

 end

 at ← arg max aVp(st, a).

 D ← D ∪{st, at}.

 End

 Training the Pti(˜πi) classifier on the D dataset.

 end

 return array Pt

end

Fig. 3. Pseudocode of the MCSDA algorithm

Software Journal: Theory and Applications 2, 2021

 4

// Forecast Stage

for i = 1 to Jk – 1 do

 Calculation of new covariances Koi ←Covariance (KoPi – 1, Pi – 1 + Q, wi)

end for

Predicting a new obstacle map Mk ← generateNewGausian(Zk – 1, Xk – 1)

//Update stage (refinements)

for i =1 to Jk|k – 1 do

 Calculating the probability of obstacle ()i

DP .

update wi based on the new probability Pi and previous states

end for

N = 1

for each z in Zk

 for i = 1 to Jk|k – 1 do

 Calculation H, Si and Ki

 Calculation KoN + i using the previous state of the Bayesian filter

 Getting the probability PN + I from the previous state

 Calculation of the correction coefficient ti

 end for

 for i = 1 to Jk|k – 1 do

 Calculating new states for the obstacle map wN + i using ti

 end for

Update N

end for

Jk = N

Refinement of the predicted obstacle map vk using Koi, Pi, wi cropping (M)

Fig. 4. Pseudocode of the RFS algorithm

Mk = []

for i = 1 to Jk do

 if wk > thrld then

 Mk = [MkKok]

 end if

end for

Fig. 5. Getting the location after using the RFS algorithm

AFR = AFR0; PH = PH0; Actcur = Act0; {Actnext} = {Actnext}0;

While true do

 PCP ← perform Perception (AFR);

 St ← assess the situation (PH, PCP, AFR);

 if ({CEP} = ∅)

 if (Actcur is not complete))

 continue Execution (Actcur);

 AFR ← plan Mental Activity(St, Actnext);

 St+n ← forecastSituation(St, n, AFR);

 {Actnext} ← plan External Activity(St + n, Actnext, AFR);

 AFR ← plan Mental Activity(St, {Actnext});

 else

 AFR ← plan Mental Activity(St);

 Actcur ← select External Action(Actnext, AFR);

 Actnext ← form Set Of Common Data(AFR);

 else

 Td ← identify Time Limit({CEP}, St);

 select The Reraction;

end while

Fig. 6. Pseudocode of the method «The concept of building intelligent

actual-time agents based on the model of advanced iterative planning»

Software Journal: Theory and Applications 2, 2021

 5

The volume of information stored in the algorithm's memory implies a comparison based on: a calculation

based on the data of one or more clock cycles of changes in the surrounding world. This volume affects the number

of factors used when planning actions.

Using only the current state of the world – using information only about the current clock cycle in calculations.

Accounting for each new state of the world – using each new operating cycle for calculations and correcting

the information obtained by using information about the previous operating cycle, starting from the first.

The algorithm type determines the fundamental principle of operation, on which the speed and accuracy de-

pend.

The goal of the algorithm - different algorithms are used for different goals. Therefore, the definition of the

primary goal, and as a result, the output data, is important for the correct integration into the architecture of the

problem solution.

Action assumptions and decision-making – based on the output data of the algorithm, decisions are made about

the further actions of the player.

Location detection – based on the output data, it is possible to determine the coordinates of the current player,

as well as find other objects relative to it.

The computational error of the location in the calculation.

The table shows a comparison among algorithms.

The comparison of analogs.

Methods that use only the operating cycle are faster than methods that use previous states of the world, but

they have less ability to predict future states. The concept of constructing the intelligent actual-time agents based

on the model of advanced iterative planning considers information starting from the first step of work, while it is

possible to plan actions, and based on this, to predict the actions of agents, but the algorithm does not calculate

coordinates. Navigation using the particle filter [13] demonstrates the highest calculation accuracy among all the

presented algorithms, but at the same time the calculation takes the most time. The navigation methods using

the Kalman filter, MCSDA, and RFC correspond to all the specified parameters, but their application depends

on the problem and the available data.

The goal of this paper is to calculate the locations of objects, so the MCSDA algorithm will be excluded from

consideration since it decides and navigates based on the already calculated locations of objects. The RFS method

will be excluded from further consideration, since it is based on an obstacle map to get the location, and construct-

ing this map for each player who has disappeared from consideration is an extremely resource-intensive problem.

Let's build a new algorithm for determining the coordinates of a player, including considering the prediction

of the location of players who were recently per visual field, and then disappeared from it, based on the Kalman

filter.

Criteria

The volume of infor-

mation stored in

memory

The goal of the

algorithm

The type of the

algorithm

The computational

error of

the location

(meters)

The concept of constructing

intelligent actual-time agents

based on the model of

advanced iterative planning

Accounting for each

new state of the world

Action assump-

tions and deci-

sion-making

Not probabilistic Does not calculate

the location

Navigate to the nearest flag

and the farthest line

Using only the cur-

rent state of the world

Identification

of position

Not probabilistic 0.25

Navigate by the two nearest

flags of the farthest line

Using only the cur-

rent state of the world

Identification

of position

Not probabilistic 1.02

Navigation using the Kal-

man filter

Accounting for each

new state of the world

Identification

of position

Probabilistic 0.29

Navigation using a particle

filter

Accounting for each

new state of the world

Identification

of position

Probabilistic 0.10

MCSDA method Accounting for each

new state of the world

Action assump-

tions and deci-

sion-making

Not probabilistic Does not calculate

the location

RFS method Accounting for each

new state of the world

Identification

of position

Probabilistic 0.20

Software Journal: Theory and Applications 2, 2021

 6

The Mathematical Model

Let's plan the problem as a mathematical model:

M = (I, P, C, F, O),

where I is the input data coming from the server. This data contains information about visible static (flags, lines,

goals) and dynamic (ball, other players) objects in the field. I = {<f, l, g, b, a>}, where f is the set of received

visible flags, l is the set of received visible lines, g is the set of visible goal flags, b is the set of ball positions

consisting of a single element, and a is the set of visible agents.

P:I → C – the function of processing input data and calculating the coordinates of the agent, the coordinates

of visible objects for the agent.

С = P(I) = {<k>} – calculation of coordinates for dynamic objects of a given game cycle, where k is the set of

coordinates (x, y) for each dynamic object.

F:C → O – a data analysis function that performs a prediction using data about the current state of the world

and the previous calculated states.

O = F(C) = {<k, p>} – the output data contains information about the location of visible objects for the current

clock cycle and a forecast of actions for objects that have recently disappeared from the program's field of view.

k is the calculated coordinates for dynamic objects of the current game cycle, p is the action assumptions for

objects that have disappeared from view, the assumption about the further movement of these objects.

Example of input data for the virtual soccer platform Soccer Simulation [3, 4]:

Flags (f) – reference objects placed in the field for calculating coordinates:
{

‘f b l 20 dist’: 43.8,

‘f b l 20 angle’: 10,

…}

Lines (l) – reference objects placed around the field for calculating coordinates:
{

‘l b dist’: 43.8,

‘f b l 20 angle’: -41,

…}

Gate (g) - reference objects placed in the field to identify different parts of the gate and calculate coordinates:
{

‘g r dist’: 100,

‘g r angle’: -44,

…}

The ball (b) is a dynamic object moving around the field. Based on the received information, it is possible to

calculate the location of the ball:
{

‘b dist’: 33.1,

‘b angle’: 2,

…}

Visible players (a) - dynamic objects moving around the field. Based on the information received, it is possible

to calculate the location of other players:
{

‘p "HELIOS2017" 2 dist’: 33.1,

‘p "HELIOS2017" 2 angle

’: -7,

…}

Figure 7 shows an example of an internal representation of the generated data based on the information received

from the server.

Information about the player at number 1, where x and y are the calculated coordinates, absX and absY are the

actual coordinates of the player, the angle is the orientation of the player in the field, speedX and speedY are the

speed of the player at the corresponding coordinates (k is the calculated coordinates for the dynamic objects of the

current game cycle):
x = -46.77

y = -5.88

absX = -47.49

absY = -5.12

angle = 2.28(radian)

speedX = 0.72

speedY = 0.44

Information about visible players 2 and 3, where viewPlayer is an array of names of visible players, mapPlayer

contains a named array of visible players with a calculated location, while x, y are the calculated coordinates of

the player, the angle is the orientation of the player on the field (k is the calculated coordinates for dynamic objects

of the current game cycle):

Software Journal: Theory and Applications 2, 2021

 7

otherPlayers.viewPlayer = ['b dist', 'p "HELIOS2017" 2', 'p "HELIOS2017" 3']

otherPlayers.mapPlayer = {

 ‘p "HELIOS2017" 2’: {

 x: -27.53,

 y: 3.18,

 angle: -48

 },

 ‘p "HELIOS2017" 3’: {

 x: -28.51,

 y: -1.77,

 angle: -60

 }

}

The action assumptions for objects that have disappeared from view (in this case, player 4), where x and y are

the predicted coordinates, before and before are the calculated coordinates of the player in the previous step, the

angle is the orientation of the player on the field, predictTick is the number of the predicted clock cycle (p is the

forecast of actions for objects that have disappeared from view):
[{

 ‘p "HELIOS2017" 4’: {

 x: -28.03,

 y: 8.02,

 beforeX: -27.53,

 beforeY: 7.18,

 angle: -51,

 predictTick: 1

 }

}]

Program Architecture

The structure of calculating the location of visible objects and constructing a forecast for objects that have

disappeared from view includes the following sequence of actions:

- processing information about the current operating cycle to get the coordinates of visible dynamic objects;

- interaction with the state store to use information about previous operating cycles;

- predicting movement for dynamic * objects that have recently disappeared from view;

- saving information about the current state.

Fig. 7. Illustration, for example, of generated data based on the information received from the server

Software Journal: Theory and Applications 2, 2021

 8

We can consider this sequence of actions as a basic set of architecture components (Fig. 8). Here, the compo-

nents include specific modules:

- the processing component of the information received from the sensor receives and processes the infor-

mation, as well as calculates the coordinates for all visible objects using the Kalman filter;

- the component of interaction with the storage of information about previous states performs the refinement

of the agent's location when there is insufficient information from the server, the determination of objects that have

recently disappeared from view, and the refinement of information about the actions of agents that have disap-

peared from view;

- the movement prediction component analyzes objects that have disappeared from view, the duration of

their stay per visual field of the current object, and performs forecasting for objects that have disappeared from

view;

- the component for saving information about the operating cycle saves data about the current game data and

deletes information about clock cycles that are no longer included in a fixed time period.

Fig. 8. Application architecture

Software Journal: Theory and Applications 2, 2021

 9

Based on the model of the control program, we implement an algorithm for determining the coordinates of
objects in the field using the Kalman filter and building an estimate for objects that have recently disappeared from
view.

Step 1. Parsing and analyzing the information received from the server.
Step 2. If there are over two visible flags, then step 3, otherwise, the module for interaction with the information

storage requests the last two states (operating cycles) and calculates the new location based on the coordinates,
direction of movement, and speed. If the step is repeated for several bars of the game, then you must perform turns
of the head or the complete body to get per visual field of at least two flags to clarify your location.

Step 3. The coordinates are calculated using the Kalman filter algorithm [13]. The correction is carried out
according to the formulas:

xi+1= xi*K+(1 – K)*(xi+ cos (α)*speedX),
yi+1 = yi*K+(1 – K)*(yi+ sin (α)*speedY),
where α is the direction of the player's body (in radians), speedX, speedY – the speed of movement along with

the x and y coordinates, respectively.
Step 4. After determining the coordinates of the current player, the algorithm calculates the coordinates of the

visible players by determining the coordinates of the three flags.
Step 5. Then the analysis of the players who disappeared from view and the duration of their stay per visual

field of the current player is performed. If the player has been per visual field for two bars or more, then it is
included in the set for which it performed the prediction.

Step 6. After receiving the array of analysis data, it predicted the new coordinates based on the last two states,
from which the last known location, direction of movement, and speed of the object are determined.

Here are some examples of calculations.
1. After converting the input data, the information about the visible flags is an array of objects of the form:
[{

‘name’: ‘f b l 20 dist’

 ‘dist’: 43.8,

‘ angle’: 10,

}, …]

2. If the visible flags are less than two, then the basis for calculating the last two states is the calculation of
the coordinates:

firstCoordVal.x = -9.01, firstCoordVal.y = 28.27

secondCoordVal.x = -8.42, secondCoordVal.y = 28.61

radian = 3.80

speedX = 0.59

speedY = -0.34

averageX = firstCoordVal.x + speedX * cos(radian) = -9.47

averageY = firstCoordVal.y + speedY * sin(radian) = 28.48

3. If there are over two visible flags, the coordinates of the two flags are calculated based on the received data
about the flags:

[{

‘name’: ‘f b l 20 dist’

 ‘dist’: 43.8,

‘ angle’: 10,

}, …]

All possible pairs are cyclically iterated over, then the average for the corresponding coordinates is calculated:
averageX: -46.71, averageY: -6.64

4. Calculation of the error variance:
distanceMax = 111.0, distanceMix = 12.6

variance = ((distanceMax - distanceMix) ** 2) / 12 = ((111.0 – 12.6)^2)/12 = 806.88

5. Updating the Kalman coefficient:
varianceLast = 805.24

kalman = (varianceLast) / (varianceLast + variance) = 805.24/(805.24+806.88) = 0.4994

6. Correction using the Kalman coefficient:
speedX = 0.72, speedY = 0.44, radian = 2.29, coordLast.x = -46.36,

coordLast.y = -5.45

x = averageX * kalman + (1 - kalman) * (coordLast.x + speedX * cos(radian)) =

= -46.70 * 0.4994 + (1 - 0.4994) * (-46.35 + 0.72 * 2.29) = -46.77

y = averageY * kalman + (1 - kalman) * (coordLast.y + speedY *sin(radian)) =

= -6.64 * 0.4994 + (1 - 0.4994) * (-5.45 + 0.44 * 2.29) = -5.87

7. Next, we determine the coordinates of the visible players by three flags, the location of the current player
always replaces one flag. Sample data:

‘p "HELIOS2017" 2 dist’: {

 x: -27.53,

 y: 3.18,

 angle: -48

}

Software Journal: Theory and Applications 2, 2021

 10

8. The analysis of the players who disappeared from view is performed, after which a list of objects that

disappeared from view is obtained:
['p "HELIOS2017" 7 dist', 'p "HELIOS2017" 4 dist', 'p "Oxsy" 1 dist']

9. We perform the prediction after getting the last two states for the disappeared objects:
radian = 53.32

metPos[length-2].x = -25.63, metPos[length-2].y = -21.49

metPos[length-1].x = -27.34, metPos[length-1].y = -21.78

Based on this data, we get the object's speed:
speedX: 1.71, speedY: 0.29

Then the prediction:
predictX = metPos[length-1].x + speedX * cos(radian) = -27.34 + 1.71 * cos(53.32) =

= -29.05

predictY = metPos[length-1].y + speedY * sin(radian) = -21.78 +0.29 * sin(53.32) =

=-21.75

Experimental Results

For experimental research and comparative analysis of the proposed solution, they have developed a program

in Python that implements the following functions:

- reading information about the game from the game protocol file and converting it to a format suitable for

further work; the protocol file stores information about the actual state of the world for each operating cycle of the

game and the data received by the players;

- calculation based on the transformed player location data;

- calculating the location of visible

dynamic objects at the time point;

- analysis of objects that disap-

peared into the current operating cycle

and prediction of their location;

- displaying the received data.

If there is enough information, i.e.

there are over two visible flags, then the

current player's location is determined

using the Kalman filter [3, 14, 15]. In the

conditions of insufficient flags, we use

the algorithm for determining the loca-

tion using the previous states according

to the principle of inertial navigation

(Fig. 9).

Forecasting comprises two stages:

- determining the list of disappeared

objects;

- predicting the location of disap-

peared objects (Fig. 10).

Data for experiments are in [17]. In

the middle of the experiments, it was

found out that the proposed solution best

predicts the location for objects located

at a distance of two to five meters from

the prediction start point, while the pre-

dictions can be considered valid for only

ten cycles of the game (Fig. 11-14). The

figures on the ordinate axis show the er-

ror of predicting new coordinates de-

pending on the actual coordinates of the

player (10, 12 – the average calculation

error, 11, 13 – the calculation error

standard deviation), on the abscissa axis

are the numbers of the predicted clock

cycles from the moment the player dis-

appears from the field of view.

Fig. 9. Activity diagram for the inertial navigation algorithm

Software Journal: Theory and Applications 2, 2021

 11

The error of predicting coordinates increases with the duration of the forecast, which is a consequence of the

high dynamism of the game. For players moving at high speed, the quality of the forecast decreases. So, for objects

those are over five meters from the beginning of the prediction point, the discrepancy in the accuracy of the pre-

Fig. 10. Activity diagram for the algorithm for predicting the location of objects

that have disappeared from view

Software Journal: Theory and Applications 2, 2021

 12

diction increases rapidly. This is because the average value of the player's movement for 10 cycles of the game

varies from 1 to 4 m.

This case shows graphs for the game helios2017-vs-oxsy2017 from the storage, but similarly graphs were

obtained for games between teams: oxsy2017-vs-hfutengine2017, oxsy2017-vs-helios2016.

Conclusion

The paper describes the solution to the problem of finding the location of virtual soccer players, including those

who have disappeared from view. The last two known states of the player became the basis for forecasting. Based

on the current position, the velocity vectors are also the basis for the forecast. The accuracy of the forecast is

maximum when the player's position changes from 2 to 5 meters, at the minimum and maximum speeds, the

average error increases rapidly. This is because the player's position changes from 2 to 5 meters. As a development,

we proposed not only to model the coordinates of the player but also to analyze the situation in the field and predict

the motives we perform for which this or that action. This may allow you to increase the accuracy of the forecast.

We can use the developed program to analyze the situation in the field. In with decision-making systems, for

example in [13], for processing incoming data. The next step is to check the operation of this system during the

competition together with the decision-making systems.

References

1. Suzuki Y., Fukushima T., Thibout L., Nakashima T., Akiyama H. Game-Watching should be more enter-

taining: Real-time application of field-situation prediction to a soccer monitor. Proc. XXIII Intern. RoboCup Sym-

posium, 2019, pp. 439–447. DOI: 10.1007/978-3-030-35699-6_35.

Fig. 11. Graph of the difference between the predicted

and absolute coordinates for the players

Fig. 12. Graph of the root-mean-square error of the

predicted and absolute coordinates for the players

Figure 13. Graph of the difference between

the predicted and absolute coordinates for the ball

Fig. 14. Graph of the root-mean-square error

of the predicted and absolute coordinates for the ball

Software Journal: Theory and Applications 2, 2021

 13

2. Visser A., Nardin L.G., Castro S. Integrating the latest artificial intelligence algorithms into the RoboCup

rescue simulation framework. Proc. XXII Intern. RoboCup Symposium, 2019, pp. 476–487. DOI: 10.1007/978-3-

030-27544-0_39.

3. Akiyama H., Nakashima T. (2014) HELIOS Base: An open source package for the RoboCup soccer 2D

simulation. Proc. XVII Intern. RoboCup Symposium, 2014, pp. 528–535. DOI: 10.1007/978-3-662-44468-9_46.

4. Belyaev S.A. Mathematical Model of the Player Control in Soccer Simulation. Proc. 2021 ElConRus, 2021,

pp. 233–237. DOI: 10.1109/ElConRus51938.2021.9396517.

5. Akiyama H., Nakashima T., Fukushima T., Zhong J., Suzuki Y., Ohori A. HELIOS2018: RoboCup 2018

soccer simulation 2D league champion. Proc. XXII Intern. RoboCup Symposium, 2019, pp. 450–461. DOI:

10.1007/978-3-030-27544-0_37.

6. Cano P., Ruiz-del-Solar J. Robust tracking of multiple soccer robots using random finite sets. Proc. XX

Intern. RoboCup Symposium, 2017, pp. 206–217. DOI: 10.1007/978-3-319-68792-6_17.

7. Riccio F., Capobianco R., Nardi D. Using Monte Carlo search with data aggregation to improve robot

soccer policies. Proc. XX Intern. RoboCup Symposium, 2017, pp. 256–267. DOI: 10.1007/978-3-319-68792-6_21.

8. Postnikov E.V., Belyaev S.A., Ekalo A.V., Shkulev A.A. Application of Fuzzy state machines to control

players in virtual soccer simulation. Proc. EIConRus, 2019, pp. 291–294. DOI: 10.1109/EIConRus.2019.8657109.

9. Belyaev S.A. Application of probabilistic and time automata in control programs of multi-agent systems.

H&ES Research, 2020, vol. 12, no. 3, pр. 47–53. DOI: 10.36724/2409-5419-2020-12-3-47-53 (in Russ.).

10. Pomas T., Nakashima T. Evaluation of situations in RoboCup 2D simulations using soccer field images.

Proc. XXII Intern. RoboCup Symposium, 2019, pp. 275–286. DOI: 10.1007/978-3-030-27544-0_23.

11. Panteleev M.G. A conception of a real-time intelligent agents development on the basis of proactive itera-

tive planning. Proc. XII National Conf. on Artificial Intelligence with International Participation KII-2012, vol.

3, pp. 25–33 (in Russ.).

12. Belyaev S.A. Intellektualnye Sistemy. Programmirovanie Igrokov v Virtualnom Futbole. Saint Petersburg,

2020, 62 p. (in Russ.).

13. Panteleev M. G., Salimov A. F. Analysis of intelligent agent navigation algorithms in virtual football.

Izvestiya SPbETU LETI, 2020, vol. 1, pp. 60–70 (in Russ.).

14. Dubrovin F.S., Shcherbatyuk A.F. Study of the algorithms for the single beacon mobile navigation of un-

manned underwater vehicles: results of simulation and sea trials. Gyroscopy and Navigation, 2015, vol. 4, pp.

160–172. DOI: 10.17285/0869-7035.2015.23.4.160-172 (in Russ.).

15. Kucherskiy R.V., Man'ko S.V. Local navigation and mapping algorithms for the onboard control system of

autonomous mobile robot. Izvestiya SFedU. Engineering Science, 2012, vol. 3, pp. 13–22 (in Russ.).

16. Chentsov D. A., Belyaev S.A. Monte Carlo tree search modification for computer games. Proc. EIConRus,

2020, pp. 252–255. DOI: 10.1109/EIConRus49466.2020.9039281.

17. RoboCupSimData Files Overview. Available at: http://oliver.obst.eu/data/RoboCupSimData/over-

view.html (accessed May 10, 2021).

УДК 004.421:004.832.24

DOI: 10.15827/2311-6749.21.2.1

Определение местонахождения игроков в виртуальном футболе

Д.А. Петруненко 1, студент, nokiad_1999@mail.ru

С.А. Беляев 1, к.т.н., доцент, bserge@bk.ru

1 Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Улья-

нова (Ленина), Санкт-Петербург, 197376, Россия

Статья посвящена решению задачи определения местоположения игроков в виртуальном футболе.

В качестве среды для проведения экспериментов использована платформа для проведения международ-

ных соревнований RoboCup 2D Soccer Simulation League. Информация о местоположениях объектов на

поле является принципиально важной для принятия решения – необходимо определять местоположение

игроков в условиях как полной, так и недостаточной информации. Использование предыдущих состояний

и прогнозирование действий для недавно скрывшихся объектов позволяют улучшить точность прогноза

развития ситуации на поле.

Software Journal: Theory and Applications 2, 2021

 14

Авторы рассмотрели существующие решения по определению местоположения игроков и разработали

новый алгоритм. При достаточности исходной информации для вычисления координат игрока использу-

ется фильтр Калмана, в условиях недостаточности информации – алгоритм инерциальной навигации, ос-

нованный на известных предыдущих состояниях.

В статье описан подход к прогнозированию местоположения игроков, которые недавно исчезли из поля

зрения, рассмотрена математическая модель алгоритма, спроектирована архитектура программного реше-

ния. Разработанное решение проверено на нескольких реальных играх в среде виртуального футбола.

Результаты представлены в виде графиков математического ожидания и дисперсии и подтверждают воз-

можность прогнозирования местоположения недавно исчезнувших из виду объектов, вычислять коорди-

наты игрока в различных условиях.

С учетом полученных результатов определены направления дальнейших исследований по прогнозиро-

ванию на основе не только предыдущих состояний, но и логики решений игроков. Следующий шаг – это

интеграция разработанной программы в систему принятия решений для совместной проверки во время

соревнований.

Ключевые слова: интеллектуальные агенты, виртуальный футбол, мультиагентные системы, пози-

ционирование в условиях неопределённости, фильтр Калмана, инерциальная навигация.

Литература

1. Suzuki Y., Fukushima T., Thibout L., Nakashima T., Akiyama H. Game-Watching should be more enter-

taining: Real-time application of field-situation prediction to a soccer monitor. Proc. XXIII Intern. RoboCup Sym-

posium, 2019, pp. 439–447. DOI: 10.1007/978-3-030-35699-6_35.

2. Visser A., Nardin L.G., Castro S. Integrating the latest artificial intelligence algorithms into the RoboCup

rescue simulation framework. Proc. XXII Intern. RoboCup Symposium, 2019, pp. 476–487. DOI: 10.1007/978-3-

030-27544-0_39.

3. Akiyama H., Nakashima T. (2014) HELIOS Base: An open source package for the RoboCup soccer 2D

simulation. Proc. XVII Intern. RoboCup Symposium, 2014, pp. 528–535. DOI: 10.1007/978-3-662-44468-9_46.

4. Belyaev S.A. Mathematical Model of the Player Control in Soccer Simulation. Proc. 2021 ElConRus, 2021,

pp. 233–237. DOI: 10.1109/ElConRus51938.2021.9396517.

5. Akiyama H., Nakashima T., Fukushima T., Zhong J., Suzuki Y., Ohori A. HELIOS2018: RoboCup 2018

soccer simulation 2D league champion. Proc. XXII Intern. RoboCup Symposium, 2019, pp. 450–461.

DOI: 10.1007/978-3-030-27544-0_37.

6. Cano P., Ruiz-del-Solar J. Robust tracking of multiple soccer robots using random finite sets. Proc.

XX Intern. RoboCup Symposium, 2017, pp. 206–217. DOI: 10.1007/978-3-319-68792-6_17.

7. Riccio F., Capobianco R., Nardi D. Using Monte Carlo search with data aggregation to improve robot

soccer policies. Proc. XX Intern. RoboCup Symposium, 2017, pp. 256–267. DOI: 10.1007/978-3-319-68792-6_21.

8. Postnikov E.V., Belyaev S.A., Ekalo A.V., Shkulev A.A. Application of Fuzzy state machines to control

players in virtual soccer simulation. Proc. EIConRus, 2019, pp. 291–294. DOI: 10.1109/EIConRus.2019.8657109.

9. Беляев С.А. Применение вероятностных и временных автоматов в программах управления много-

агентных систем // Наукоемкие технологии в космических исследованиях Земли. 2020. Т. 12. № 3.

С. 47–53. DOI: 10.36724/2409-5419-2020-12-3-47-53.

10. Pomas T., Nakashima T. Evaluation of situations in RoboCup 2D simulations using soccer field images.

Proc. XXII Intern. RoboCup Symposium, 2019, pp. 275–286. DOI: 10.1007/978-3-030-27544-0_23.

11. Пантелеев М.Г. Концепция построения интеллектуальных агентов реального времени на основе мо-

дели опережающего итеративного планирования // КИИ-2012: сб. тр. Белгород. 2012. Т. 3. С. 25–33.

12. Беляев С.А. Интеллектуальные системы. Программирование игроков в виртуальном футболе. СПб:

Изд-во СПбГЭТУ «ЛЭТИ», 2020. 62 с.

13. Пантелеев М.Г., Салимов А.Ф. Анализ алгоритмов навигации интеллектуального агента в виртуаль-

ном футболе. Изв. СПбГЭТУ «ЛЭТИ». 2020. Т. 1. С. 60–70.

14. Дубровин Ф.С., Щербатюк А.Ф. Исследование некоторых алгоритмов одномаяковой мобильной

навигации АНПА: результаты моделирования и морских испытаний // Гироскопия и навигация. 2015.

Т. 4. С. 160–172. DOI: 10.17285/0869-7035.2015.23.4.160-172.

15. Кучерский Р.В., Манько С.В. Алгоритмы локальной навигации и картографии для бортовой си-

стемы управления автономного мобильного робота // Изв. ЮФУ: Технич. науки. 2012. Т. 3. С. 13–22.

16. Chentsov D. A., Belyaev S.A. Monte Carlo tree search modification for computer games. Proc. EIConRus,

2020, pp. 252–255. DOI: 10.1109/EIConRus49466.2020.9039281.

17. RoboCupSimData Files Overview. URL: http://oliver.obst.eu/data/RoboCupSimData/overview.html (дата

обращения: 10.05.2021).

