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The paper considers solving the problem of localization of players in virtual soccer. The authors use the Ro-
boCup 2D Soccer Simulation League international competition platform as a medium for conducting experiments.
The location information of objects in the field is important for deciding—it is necessary to find players in condi-
tions of both complete and insufficient information. Using previous states and predicting actions for recently hid-
den objects can improve the accuracy of the projected growth of the situation in the field.

The authors reviewed existing solutions for the localization of players and developed a new algorithm.
If the initial information suffices to calculate the player's coordinates, we use the Kalman filter, and if the infor-
mation is insufficient, we use the inertial navigation algorithm based on known previous states. The paper describes
an approach to predicting the players' location that has recently disappeared from view, considers the mathematical
model of the algorithm, and designs the architecture of the software solution. Several actual players in the virtual
soccer environment tested the developed solution. We show the results as graphs of mathematical expectation and
dispersion and confirm the predictability of the location of recently disappeared objects, calculating the coordinates
of the player in various conditions.

The obtained results determine the directions for further research on forecasting based not only on previous
states but also on the logic of players' decisions. The next step is to integrate the developed program into the
decision-making system for joint verification during the competition.

Keywords: intelligent agents, virtual soccer, multi-agent systems, positioning under uncertainty, Kalman filter,
inertial navigation.

Currently, artificial intelligence is surging. Some platforms are designed for scientific research in the field of
artificial intelligence (for example, Gym OpenAl, GVGALI), others are for competitions (RoboCup 2D Soccer
Simulation League Champion [1], RoboCup Rescue Simulation [2]). Simulation in virtual soccer is used for re-
search, development, and comparison of multi-agent systems, to simplify this process, it is possible to use Soccer
Simulation [3], which provides the suitable tools.

The environment of virtual soccer is very dynamic and can well simulate the conditions of the real world.
In particular, they assumed full autonomy of the player management programs and the provision of visual and
audio information to the players with a predetermined error and distance restrictions. Various methods are used to
control and position players: using decision trees, which form options for further actions based on the current state
(tree node) and input data [4, 5], using random finite sets [4, 6], the Monte Carlo method [4, 7], fuzzy automata
[8], probabilistic automata [9], convolutional neural networks [1, 4, 10].

Decision-making can be based only on the current state of the world or on several previous states. At the same
time, an agent that considers the previous states will act more efficiently and therefore win against a player who
decides to consider only one state. Planning actions based on the change history in the situation is important when
creating intelligent agents. Action planning involves predicting changes in the field situation, considering the ac-
tions that can be performed in the situation created. The prediction can be carried out based on both incoming data
and change, along with updated information at each clock cycle [7], and the formed model with its gradual refine-
ment [11]. We consider information about visible objects in both cases, but for objects that were recently in vision
and then disappeared from it, the behavior is unknown. Considering their behavior will significantly enrich the
model and improve the accuracy of predicting the development of the situation in the field.

We should note that in the conditions of virtual soccer, the coordinates of the player are also unknown — we
calculate them based on the visible flags placed around and on the playing field. This problem is not always solved
unambiguously since the information is provided to the control program with some error [12].

Problems’ Solutions

The virtual soccer platform provides noise for the data arriving to players from the visual sensor, which imposes
restrictions on how to solve the problem. We can apply the algorithms specified below.

1. Navigate by the nearest flag and the farthest line.

Calculations are performed based on the trigonometric formulas-the static point in the field closest to the agent
is selected (the midfield, the team's goal, the four areas in front of the goal, to the right and left of them, the area
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directly in front of the goal) and the far visible line of the Ib

field boundary (Fig. 1). Using the angle calculated by the for- | Ip
mula: B = —sin(a)(90 —|a), where a — the angle at which the [
line is visible, and the available absolute coordinates of the a
flag, the agent calculates its real coordinates [13]:

(px, py) = (fx, fy) — a(fr, fo + (90 + B)), where x, fy, fr, fo —
the x and y coordinates of the flag, as well as the distance to
it and the angle at which the flag is visible, respectively;
7 is the function of converting polar coordinates to Cartesian
coordinates.: B

7(r, @) = (rcos(o), rsin(e)). \9

2. Navigate by the two nearest flags and the farthest line.

Calculations for this method are based on trigonometric
formulas using the two static points closest to the agent . _ o
in the field (the midfield, the team goal, the four areas in front Fig. 1. The feature algorithm «Navigation
of the goal, to the right and left of them, the area directly in by the nearest flag and the farthest line»
front of the goal) and the far line (Fig. 2). The distance to the
flag and its coordinates define a circle of possible positions,
and the intersection of the two circles determines the
player's position. The distance between flags (f, g):

d=\(gx-70%+(gy- 1)
Calculating the player absolute coordinates [13]:
(px, py) = (px’ — h sign sin(a), py’+ h sign cos(a)),
where (px’, py’) = (fx + a cos (a), fy + a sin (a)),
AY AX

sin (o) = i cos(a) = q

3. Navigation using the particle filter.

The particle filter is a method for determining the abso-
lute coordinates of a player, according to which a set of hy-
potheses about their current values is created to estimate the

coordinates. The algorithm for determining the absolute co- Fig. 2. The feature algorithm «Navigation
ordinates based on the particle filter includes the following | 2V the two nearest flags and the farthest line»
steps.

Step 1. Initialization-getting information about the first step of the work, while generating hypotheses ran-
domly.

Step 2. Prediction-guess the player's location based on the information received from the server.

Step 3. Correction-calculation of the weight coefficients, and before this calculation, the particles are filtered
out by calculating the upper and lower bounds of the hypotheses (particles that are not included in the range are
removed) and re-sampling — removing hypotheses with low weight and duplicating hypotheses with high weight.

Step 4. State estimation-calculation of absolute coordinates as the weighted sum of all particles' states [13, 14].

4. Navigation using the Kalman filter.

The method allows you to get an estimate of the object's state vector (in this case, the player's coordinates)
based on a series of noisy measurements. It implemented the solution in several steps.

Step 1. Post-information analysis received from the visual sensor (information from the server). If you have
saved data, you can skip the parsing step and focus on the analysis.

Step 2. Cyclic processing of all possible pairs-iterating over all pairs of visible flags and calculating the absolute
coordinates from these flags.

Step 3. Calculation of the sensor error variance — the primary stage at which the quality of this method is
2 (rmax—rmin)2

determined: Oi = B

ues; "2 is the error dispersion.
Step 4. Update the value of the Kalman gain (K), considering the resulting dispersion. The coefficient value
must provide the maximum proximity of the calculated optimal values of the absolute coordinates to their true
2

i
values: Kzzi .
% T

Step 5. Correction using the Kalman coefficient of the estimated value of the absolute coordinates of the agent
in this iteration: Xi+1= Xi*K+(1 — K)*(Xi+ AX), Vi1 = yi*K+(1— K)*(yi + Ay), where AXx, Ay is the expected change in
coordinates.

2

, Where rmax and rmin are the maximum and minimum possible distance val-
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Thus, the real coordinates of the player are calculated [13-15].

5. Monte Carlo method and Data aggregation.

The method is based on a combination of Monte Carlo search and data aggregation (MCSDA) [7] to adapt the
agent's actions to the opposing team's game strategies. Using a simple domain representation, the algorithm is
trained in a controlled way on an initial data set comprising several simulations of actual games, similar to [16].
The method allows you to control navigation and helps in deciding in the field. The algorithm uses a set of state-
action pairs as input. Then the classifier “x is trained, and at each iteration, the algorithm expands its data set ~xt
by generating the state st at each time step, with the expected value maximized by the function V, (s, a). After the
entire cycle, the aggregated data set is used to train a new classifier ~n (Fig. 3).

begin
Training of the classifier P("xr) on the expert data set De.
Pl « classifier training ().
Initialization D «De.
fori=1toNdo
Initialization sO «—init(D.
fort=1to Tdo
Getting st states from the previous classifier state Pi—1(sz—1).
A « select possible actions from st (if necessary).
foreach a € Ado
Performing K simulations using the Monte Carlo method of length K to evaluate states
Vp(st, a).
end
at < arg max avp(st, a).
D <« D u{st, at}.
End
Training the Pti("zi) classifier on the D dataset.
end
return array Pt
end
Fig. 3. Pseudocode of the MCSDA algorithm

6. Random finite sets method

The method provides the map construction of robot movements using random finite sets (RFS) [6]. It is applied
to the assessment problem of the teammate and opponent position in the SPL League and comprises two steps.

Step 1. Prediction-creating hypotheses about the appearance of new obstacles for the next cycle of work.

Step 2. Update-calculation of the discoverability of new obstacles at a given point, after which there are the
operations of pruning and merging elements (Gaussians that are determined close enough, through the Mahalano-
bis distance threshold, are combined into one).

Figure 4 shows the pseudocode of the algorithm.

This algorithm is used to calculate obstacle maps in visible space. To get the position of an object in the field,
you need to estimate the weight of each element. The mean vector sets if and added to the vector representing
the current map (Figure 5).

7. The concept of constructing the intelligent real-time agents based on the model of advanced iterative
planning.

For decision-making by players, the concept of constructing a model of advanced iterative planning
is used [10]. The steps are generalized since because of the exponential growth of the trees of possible events,
accurate prediction is not possible. The calculation cycle includes the following steps.

Step 1. Getting sensory information from the perception subsystem.

Step 2. Assess the situation.

Step 3. Predicting the situation.

Step 4. Planning the actions.

Step 5. Issuing commands to the executive subsystem to perform actions.

Figure 6 shows the pseudocode of the method.

The presented algorithms and methods can be compared according to the following criteria:

- the volume of information stored in the algorithm's memory;

- algorithm goal;

- type of algorithm;

- computational error of locations (in virtual soccer, measured in meters).
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/I Forecast Stage
fori=1toJk—1do

Calculation of new covariances Koi «Covariance (KoPi—1, Pi—1 + Q, wi)
end for
Predicting a new obstacle map Mk < generateNewGausian(Zk — 1, Xk — 1)
/Update stage (refinements)
fori=1toJkk—-1do

Calculating the probability of obstacle P{.

update wi based on the new probability Pi and previous states
end for
N=1
for each z in Zk
fori=1to Jkk-1do
Calculation H, Si and Ki
Calculation KoN + i using the previous state of the Bayesian filter
Getting the probability PN + I from the previous state
Calculation of the correction coefficient ti
end for
fori=1to Jkk—-1do
Calculating new states for the obstacle map wN + i using ti
end for
Update N
end for
Jk=N
Refinement of the predicted obstacle map vk using Koi, Pi, wi cropping (M)

Fig. 4. Pseudocode of the RFS algorithm

Mk =]
fori=1toJkdo
if wk > thrld then
Mk = [MkKoKk]
end if
end for

Fig. 5. Getting the location after using the RFS algorithm

AFR = AFRO; PH = PHO; Actcur = Act0; {Actnext} = {Actnext}0;
While true do
PCP « perform Perception (AFR);
St « assess the situation (PH, PCP, AFR);
if {CEP} =0)
if (Actcur is not complete))
continue Execution (Actcur);
AFR « plan Mental Activity(St, Actnext);
St+n — forecastSituation(St, n, AFR);
{Actnext} «— plan External Activity(St + n, Actnext, AFR);
AFR « plan Mental Activity(St, {Actnext});
else
AFR « plan Mental Activity(St);
Actcur « select External Action(Actnext, AFR);
Actnext « form Set Of Common Data(AFR);
else
Td « identify Time Limit({CEP}, St);
select The Reraction;
end while

Fig. 6. Pseudocode of the method «The concept of building intelligent
actual-time agents based on the model of advanced iterative planning»
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The volume of information stored in the algorithm's memory implies a comparison based on: a calculation
based on the data of one or more clock cycles of changes in the surrounding world. This volume affects the number
of factors used when planning actions.

Using only the current state of the world — using information only about the current clock cycle in calculations.

Accounting for each new state of the world — using each new operating cycle for calculations and correcting
the information obtained by using information about the previous operating cycle, starting from the first.

The algorithm type determines the fundamental principle of operation, on which the speed and accuracy de-
pend.

The goal of the algorithm - different algorithms are used for different goals. Therefore, the definition of the
primary goal, and as a result, the output data, is important for the correct integration into the architecture of the
problem solution.

Action assumptions and decision-making — based on the output data of the algorithm, decisions are made about
the further actions of the player.

Location detection — based on the output data, it is possible to determine the coordinates of the current player,
as well as find other objects relative to it.

The computational error of the location in the calculation.

The table shows a comparison among algorithms.

The comparison of analogs.

The volume of infor-

The computational

based on the model of
advanced iterative planning

sion-making

I - - The goal of the | The type of the error of
Criteria mation stored in : : .
algorithm algorithm the location
memory
(meters)
The concept of constructing |Accounting for each |Action assump-  |Not probabilistic |Does not calculate
intelligent actual-time agents |new state of the world |tions and deci- the location

Navigate to the nearest flag |Using only the cur-  |ldentification Not probabilistic |0.25
and the farthest line rent state of the world |of position
Navigate by the two nearest |[Using only the cur- |ldentification Not probabilistic [1.02
flags of the farthest line rent state of the world |of position
Navigation using the Kal-  |Accounting for each |ldentification Probabilistic 0.29
man filter new state of the world |of position
Navigation using a particle |Accounting for each |ldentification Probabilistic 0.10
filter new state of the world |of position

new state of the world

of position

MCSDA method Accounting for each |Action assump-  |Not probabilistic |Does not calculate
new state of the world |tions and deci- the location
sion-making
RFS method Accounting for each |ldentification Probabilistic 0.20

Methods that use only the operating cycle are faster than methods that use previous states of the world, but
they have less ability to predict future states. The concept of constructing the intelligent actual-time agents based
on the model of advanced iterative planning considers information starting from the first step of work, while it is
possible to plan actions, and based on this, to predict the actions of agents, but the algorithm does not calculate
coordinates. Navigation using the particle filter [13] demonstrates the highest calculation accuracy among all the
presented algorithms, but at the same time the calculation takes the most time. The navigation methods using
the Kalman filter, MCSDA, and RFC correspond to all the specified parameters, but their application depends
on the problem and the available data.

The goal of this paper is to calculate the locations of objects, so the MCSDA algorithm will be excluded from
consideration since it decides and navigates based on the already calculated locations of objects. The RFS method
will be excluded from further consideration, since it is based on an obstacle map to get the location, and construct-
ing this map for each player who has disappeared from consideration is an extremely resource-intensive problem.

Let's build a new algorithm for determining the coordinates of a player, including considering the prediction
of the location of players who were recently per visual field, and then disappeared from it, based on the Kalman
filter.
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The Mathematical Model

Let's plan the problem as a mathematical model:

M=(l,P,C,F, 0),
where | is the input data coming from the server. This data contains information about visible static (flags, lines,
goals) and dynamic (ball, other players) objects in the field. | = {<f, I, g, b, a>}, where f is the set of received
visible flags, | is the set of received visible lines, g is the set of visible goal flags, b is the set of ball positions
consisting of a single element, and a is the set of visible agents.

P:l — C — the function of processing input data and calculating the coordinates of the agent, the coordinates
of visible objects for the agent.

C = P(I) = {<k>} — calculation of coordinates for dynamic objects of a given game cycle, where Kk is the set of
coordinates (x, y) for each dynamic object.

F:C — O — a data analysis function that performs a prediction using data about the current state of the world
and the previous calculated states.

0O = F(C) = {<k, p>} — the output data contains information about the location of visible objects for the current
clock cycle and a forecast of actions for objects that have recently disappeared from the program's field of view.

k is the calculated coordinates for dynamic objects of the current game cycle, p is the action assumptions for
objects that have disappeared from view, the assumption about the further movement of these objects.

Example of input data for the virtual soccer platform Soccer Simulation [3, 4]:

Flags (f) — reference objects placed in the field for calculating coordinates:

{

‘f b 1 20 dist’: 43.8,

‘f b 1 20 angle’: 10,

)
Lines (I) — reference objects placed around the field for calculating coordinates:
{
‘1 b dist’: 43.8,
‘f b 1 20 angle’: -41,

}

Gate (g) - reference objects placed in the field to identify different parts of the gate and calculate coordinates:
{

‘g r dist’: 100,

‘g r angle’: -44,

)

The ball (b) is a dynamic object moving around the field. Based on the received information, it is possible to
calculate the location of the ball:

{

‘b dist’: 33.1,

‘b angle’: 2,

o}

Visible players (a) - dynamic objects moving around the field. Based on the information received, it is possible
to calculate the location of other players:

{

‘p "HELIOS2017" 2 dist’: 33.1,

‘p "HELIOS2017" 2 angle

re =7,

)

Figure 7 shows an example of an internal representation of the generated data based on the information received
from the server.

Information about the player at number 1, where x and y are the calculated coordinates, absX and absY are the
actual coordinates of the player, the angle is the orientation of the player in the field, speedX and speedY are the
speed of the player at the corresponding coordinates (k is the calculated coordinates for the dynamic objects of the
current game cycle):

x = -46.77

y = -5.88
absX = -47.49
absY = -5.12

angle = 2.28(radian)

speedX = 0.72

speedY = 0.44

Information about visible players 2 and 3, where viewPlayer is an array of names of visible players, mapPlayer
contains a named array of visible players with a calculated location, while x, y are the calculated coordinates of
the player, the angle is the orientation of the player on the field (k is the calculated coordinates for dynamic objects
of the current game cycle):

6
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otherPlayers.viewPlayer = ['b dist', 'p "HELIOS2017" 2', 'p "HELIOS2017" 3']
otherPlayers.mapPlayer = {
‘p "HELIOS2017"™ 2': {

x: =27.53,
y: 3.18,
angle: -48

br
‘p "HELIOS2017" 37: {

x: -28.51,
y: =1.77,
angle: -60

Fig. 7. llustration, for example, of generated data based on the information received from the server

The action assumptions for objects that have disappeared from view (in this case, player 4), where x and y are
the predicted coordinates, before and before are the calculated coordinates of the player in the previous step, the
angle is the orientation of the player on the field, predictTick is the number of the predicted clock cycle (p is the
forecast of actions for objects that have disappeared from view):

[{

‘p "HELIOS2017" 47: {
x: -28.03,
y: 8.02,
beforeX: -27.53,
beforey: 7.18,
angle: -51,
predictTick: 1

Program Architecture

The structure of calculating the location of visible objects and constructing a forecast for objects that have
disappeared from view includes the following sequence of actions:

- processing information about the current operating cycle to get the coordinates of visible dynamic objects;

- interaction with the state store to use information about previous operating cycles;

- predicting movement for dynamic * objects that have recently disappeared from view;

- saving information about the current state.
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We can consider this sequence of actions as a basic set of architecture components (Fig. 8). Here, the compo-
nents include specific modules:

- the processing component of the information received from the sensor receives and processes the infor-
mation, as well as calculates the coordinates for all visible objects using the Kalman filter;

- the component of interaction with the storage of information about previous states performs the refinement
of the agent's location when there is insufficient information from the server, the determination of objects that have
recently disappeared from view, and the refinement of information about the actions of agents that have disap-
peared from view;

- the movement prediction component analyzes objects that have disappeared from view, the duration of
their stay per visual field of the current object, and performs forecasting for objects that have disappeared from
view;

- the component for saving information about the operating cycle saves data about the current game data and
deletes information about clock cycles that are no longer included in a fixed time period.

Data preprocessing layer

Processing information received from the server

Module for processing incoming information

Module for calculating coordinates for all
visible objects using the Kalman filter

The module for specifying the location of the
agent, if there is insufficient information from the server

Business Logic layer

Predicting the movement of recently disappeared Interaction with the storage of information
dynamic objects about previous states
Module for analyzing objects that have Module for detecting recently disappeared
disappeared from the view and the duration of their N objects
stay per visual field of »
the current object
Prediction module for objects that have Module for clarifying information about the
disappeared from view actions of agents that have disappeared from view
Data access layer
Y lf

Interface for interacting with the databank

Saving information about the operating cycle in
progress

Module for saving data about the current game
data

Module for monitoring and deleting information
about operating cycles that are no longer included in
a fixed time interval

¥ A 4

Databank for the previous states of objects in
the field

Fig. 8. Application architecture
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Based on the model of the control program, we implement an algorithm for determining the coordinates of
objects in the field using the Kalman filter and building an estimate for objects that have recently disappeared from
view.

Step 1. Parsing and analyzing the information received from the server.

Step 2. If there are over two visible flags, then step 3, otherwise, the module for interaction with the information
storage requests the last two states (operating cycles) and calculates the new location based on the coordinates,
direction of movement, and speed. If the step is repeated for several bars of the game, then you must perform turns
of the head or the complete body to get per visual field of at least two flags to clarify your location.

Step 3. The coordinates are calculated using the Kalman filter algorithm [13]. The correction is carried out
according to the formulas:

Xir1= Xi*K+(1 — K)*(xi+ cos (a)*speedX),

Yir1 = Yi*K+(1 — K)*(yi+ sin (o) *speedY),

where a is the direction of the player's body (in radians), speedX, speedY — the speed of movement along with
the x and y coordinates, respectively.

Step 4. After determining the coordinates of the current player, the algorithm calculates the coordinates of the
visible players by determining the coordinates of the three flags.

Step 5. Then the analysis of the players who disappeared from view and the duration of their stay per visual
field of the current player is performed. If the player has been per visual field for two bars or more, then it is
included in the set for which it performed the prediction.

Step 6. After receiving the array of analysis data, it predicted the new coordinates based on the last two states,
from which the last known location, direction of movement, and speed of the object are determined.

Here are some examples of calculations.

1. After converting the input data, the information about the visible flags is an array of objects of the form:

[{

‘name’: ‘f b 1 20 dist’

‘dist’: 43.8,

Y angle’: 10,

-

2. If the visible flags are less than two, then the basis for calculating the last two states is the calculation of

the coordinates:

firstCoordval.x = -9.01, firstCoordvVal.y = 28.27
secondCoordVal.x = -8.42, secondCoordVal.y = 28.61

radian = 3.80

speedX = 0.59

speedY = -0.34

averageX = firstCoordvVal.x + speedX * cos(radian) = -9.47
averageY = firstCoordval.y + speedY * sin(radian) = 28.48

3. [Ifthere are over two visible flags, the coordinates of the two flags are calculated based on the received data

about the flags:
[{
‘name’: ‘f b 1 20 dist’
‘dist’: 43.8,
Y angle’: 10,
boowd
All possible pairs are cyclically iterated over, then the average for the corresponding coordinates is calculated:
averageX: -46.71, averageY: -6.64
4. Calculation of the error variance:
distanceMax = 111.0, distanceMix = 12.6
variance = ((distanceMax - distanceMix) ** 2) / 12 = ((111.0 - 12.6)"2)/12 = 806.88
5. Updating the Kalman coefficient:
variancelast = 805.24

kalman = (variancelLast) / (variancelast + variance) = 805.24/(805.24+806.88) = 0.4994
6. Correction using the Kalman coefficient:

speedX = 0.72, speedY = 0.44, radian = 2.29, coordlLast.x = -46.36,

coordLast.y = -5.45

x = averageX * kalman + (1 - kalman) * (coordLast.x + speedX * cos(radian)) =

= -46.70 * 0.4994 + (1 - 0.4994) * (-46.35 + 0.72 * 2.29) = -46.77

y = averageY * kalman + (1 - kalman) * (coordLast.y + speedY *sin(radian)) =

= -6.64 * 0.4994 + (1 - 0.4994) * (-5.45 + 0.44 * 2.29) = -5.87

~

. Next, we determine the coordinates of the visible players by three flags, the location of the current player
always replaces one flag. Sample data:

‘p "HELTIOS2017" 2 dist’: {
x: =-27.53,

y: 3.18,

angle: -48
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8. The analysis of the players who disappeared from view is performed, after which a list of objects that
disappeared from view is obtained:
['p "HELIOS2017" 7 dist', 'p "HELIOS2017" 4 dist', 'p "Oxsy" 1 dist']

9. We perform the prediction after getting the last two states for the disappeared objects:
radian = 53.32

metPos[length-2].x = -25.63, metPos|[length-2].y = -21.49

metPos[length-1].x = -27.34, metPos[length-1].y = -21.78

Based on this data, we get the object's speed:

speedX: 1.71, speed¥Y: 0.29

Then the prediction;

predictX = metPos[length-1].x + speedX * cos(radian) = -27.34 + 1.71 * cos(53.32) =
= -29.05

predictY = metPos|[length-1].y + speedY * sin(radian) = -21.78 +0.29 * sin(53.32) =
=-21.75

Experimental Results

For experimental research and comparative analysis of the proposed solution, they have developed a program
in Python that implements the following functions:

- reading information about the game from the game protocol file and converting it to a format suitable for
further work; the protocol file stores information about the actual state of the world for each operating cycle of the
game and the data received by the players;

- calculation based on the transformed player location data;

- calculating the location of visible
dynamic objects at the time point;

- analysis of objects that disap-
peared into the current operating cycle Are there over 2
and prediction of their location; Visble flage?

- displaying the received data.

If there is enough information, i.e. [ Yes

there are over two visible flags, then the Checking the time spent in conditions of
current player's location is determined nsufficient flags

using the Kalman filter [3, 14, 15]. Inthe
conditions of insufficient flags, we use [

Is the number of
operating cycles
over 37

Estimating the number of previous
states

Y

the algorithm for determining the loca-
tion using the previous states according

Calculating the location

to the principle of inertial navigation I the number of previous using the Kalman filter
(Fig 9) states over 27

Forecasting comprises two stages:

- determining the list of disappeared Yes No v
objects; ( )

e H H Getting the last previous states of the Start of the location clarification

- predicting the location of disap- 9 Slayer rocedure
peared objects (Fig. 10). \ J X

Data for experiments are in [17]. In VL

' ™\

the middle of the experiments, it was
found out that the proposed solution best

Calculating the player's speed vector

predicts the location for objects located | 1 ’

at a distance of two to five meters from | ¢ N v

the prediction start point, while the pre- | | Caleulating a new location based on @
.- . . he pl " d

dictions can be considered valid for only | {_ e players speedvecer X

ten cycles of the game (Fig. 11-14). The Is getting the coordinates

figures on the ordinate axis show the er- outof the fleld?

ror of predicting new coordinates de-
pending on the actual coordinates of the No
player (10, 12 — the average calculation [

Yes

Accounting for time spentin
conditions of insufficient time J

error, 11, 13 — the calculation error
standard deviation), on the abscissa axis
are the numbers of the predicted clock
cycles from the moment the player dis- Fig. 9. Activity diagram for the inertial navigation algorithm
appears from the field of view.
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Estimating the number of previous
states

Are there previous
states over 07
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Updating the previous player state

¢ No

Creating a list of «invisible» players

. /

No )@

Quality assessment of previous states in
which the player was visible, and already
predicted locations

Is there an element
that has not yet
been predicted?
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Getting previous player states

v

e D

J

Calculating the player's speed vector

\ J/

¥

( ™
Calculating a new location based on
the player's
speed vector
\ S
Y
4 a

Adding to the list of predicted states

. S

Fig. 10. Activity diagram for the algorithm for predicting the location of objects
that have disappeared from view

The error of predicting coordinates increases with the duration of the forecast, which is a consequence of the
high dynamism of the game. For players moving at high speed, the quality of the forecast decreases. So, for objects
those are over five meters from the beginning of the prediction point, the discrepancy in the accuracy of the pre-
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diction increases rapidly. This is because the average value of the player's movement for 10 cycles of the game
varies from 1to 4 m.

- 71 - -
1 4 e - distName
P P \ —— HomTwoToFive
, g \
S AN e’ 6 \ ——- Morefive
- .
10 i \ ,,-” N e PredictLessTwo
m—— \
N //" K
4 A
A 5 \\
81 distName |
—— FromTwoToFive 4 .

=== MoreFive T T
------- PredictLessTwo

predictTick predictTick

Fig. 11. Graph of the difference between the predicted | Fig. 12. Graph of the root-mean-square error of the

and absolute coordinates for the players predicted and absolute coordinates for the players
distName e A\

—— FomTwoToFive 5 107 N e
30 s \ -

~—- Morefive /// \ A e i

------- PredictLessTwo P \ el
251 8 e <

“A-."’/
20 distName
— HFomTwoToFive

——- MoreFive
- PredictLessTwo

15 4

10 4

2 4 6 8 10 2 4 6 8 10
predictTick predictTick
Figure 13. Graph of the difference between Fig. 14. Graph of the root-mean-square error
the predicted and absolute coordinates for the ball of the predicted and absolute coordinates for the ball

This case shows graphs for the game helios2017-vs-oxsy2017 from the storage, but similarly graphs were
obtained for games between teams: oxsy2017-vs-hfutengine2017, oxsy2017-vs-helios2016.

Conclusion

The paper describes the solution to the problem of finding the location of virtual soccer players, including those
who have disappeared from view. The last two known states of the player became the basis for forecasting. Based
on the current position, the velocity vectors are also the basis for the forecast. The accuracy of the forecast is
maximum when the player's position changes from 2 to 5 meters, at the minimum and maximum speeds, the
average error increases rapidly. This is because the player's position changes from 2 to 5 meters. As a development,
we proposed not only to model the coordinates of the player but also to analyze the situation in the field and predict
the motives we perform for which this or that action. This may allow you to increase the accuracy of the forecast.
We can use the developed program to analyze the situation in the field. In with decision-making systems, for
example in [13], for processing incoming data. The next step is to check the operation of this system during the
competition together with the decision-making systems.
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Omnpenenenne MeCTOHAXO0KIEHUsI HTPOKOB B BUPTYajibHOM (yT6OJI€e

M.A. Hempynenxo *, cmyoenm, nokiad_1999@mail.ru
C.A. Benses ', k.m.n., doyenm, bserge@bk.ru

Y Canxm-Ilemepbypeckuii 2ocyoapcmeennvlii dnekmpomexnudeckuti yuusepcumem «JIITH» um. B.H. Yiva-
nosa (Jlenuna), Canxkm-Ilemepoype, 197376, Poccus

CratThsi IOCBsIIIEHA PEIICHUIO 33/1a4M OINPEJENICHNUs] MECTOIOJIOKEHHUsI UTPOKOB B BHUPTYyajbHOM (yTOOIIE.
B xauecTBe cpensl Uil IPOBEIECHUS SKCIIEPUMEHTOB HCIIOIB30BaHa IIaTGopMa JUlsl IPOBEACHUS MEXIyHapOI-
HBIX copeBHOBaHHH RoboCup 2D Soccer Simulation League. MHdopmanus 0 MECTONOJIOKEHUSAX OOBEKTOB Ha
T0JIe SBJSIETCS IPUHIMITNAIBHO BKHOW ISl IPUHSTHS PEIICHNS] — HEOOXO0ANMO ONPENENSTh MECTOIIOJIOKECHHUE
UTPOKOB B YCIOBUSIX KaK TOJIHOM, TaK U HEOCTaTOYHOM nH(OopManuy. Mcnons30Banue NpeablyIInX COCTOSHUM
Y IPOTHO3UPOBAHME NEHCTBUI VISl HEAaBHO CKPBIBIIMXCS OOBEKTOB MO3BOJISIOT YIIyUIINTh TOYHOCTH IIPOTHO32
pa3BUTHSI CUTYallMM Ha TOJIE.
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ABTOpPHI paCCMOTPEIH CYIIECTBYIOMINE PEIICHHUS IO OIIPEIEIICHIIO MECTOIIOIOKEHHUS UTPOKOB U pa3padboTaii
HOBEIH anroputMm. [Ipu T0CTaTOYHOCTH UCXOAHOM MH(DOPMAIUH [Tl BBIYMCIICHUS KOOPAUHAT UTPOKA UCTIONB3Y-
etcst punbTp KanMana, B yCIIOBUSX HEIOCTATOYHOCTH HH()OPMAIMH — AITOPUTM WHEPIIHATBLHON HABHUTAI[MH, OC-
HOBaHHBIN Ha U3BECTHBIX MPEABIAYIINX COCTOSIHUAX.

B craTee onrcan noxo1 K MpOrHO3UPOBAHUIO MECTOIIOJIOKEHUS UTPOKOB, KOTOPHIE HEJTABHO UCUE3JIH U3 OIS
3pEHMs], pACCMOTPEHA MaTeMaTUUYEeCKasi MOJIENb allTOPUTMA, CIPOEKTUPOBAHA apXUTEKTypa MPOrPaMMHOI0O pele-
HUs. Pa3paboTaHHOE pelICHHE MPOBEPEHO HA HECKOJBKUX PEAbHBIX WUTpax B Cpejliec BUPTyalbHOTO (yrOOIa.
PesynbraTel npeacTaBiIeHH B BUAE TPpaUKOB MaTEMAaTHIECKOTO OKUIAHUS M AUCTIEPCHH U TTOATBEPKAAIOT BO3-
MOJKHOCTH IPOTHO3HPOBAHUS MECTOIIONOKEHHU HETaBHO MCYC3HYBIINX U3 BHIY OOBEKTOB, BRIYHCIATH KOOPAH-
HaThl UTPOKA B PA3JINUHBIX YCIOBHUSAX.

C y4eToM MOJTYICHHBIX PEe3yIbTaTOB OINPEeIICHBI HAIIPaBICHHS NaTbHEHIIINX UCCIIETOBAHUH 110 TPOTHO3MPO-
BaHUIO HA OCHOBE HE TOJBKO MPEABIIYIINX COCTOSHUH, HO M JIOTHKHU pelIeHui urpokoB. Cieayromuii mar — 3To
MHTETpaIys pa3padOTaHHOH MPOTpaMMBI B CHCTEMY IPHHSTHS PEIICHUH JII COBMECTHON IPOBEPKH BO BpeMs
COpPEBHOBaHUU.

Kniouesvie cnosa: unmeniexmyanvhvle deenmuol, GUPMYAIbHblll Yymo6o, MyIbmudaeeHmHtble CUCMeMbl, NO3U-
YUOHUPOBAHUE 8 YCL08UAX Heonpedenénnocmu, Quivmp Kaimana, unepyuanvhas Hasueayus.
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