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Fuzzy multi-criteria decision analysis (FMCDA) is based on assessing functions of fuzzy arguments and rank-

ing of fuzzy numbers. In the general case, implementing each of the above operations requires using the appropri-

ate computer modules. All the current FMCDA systems are based on approximate estimates of the functions of 

fuzzy arguments. The purpose of this paper is to create and apply the FMCDA system, which implements all the 

main approaches to evaluating functions of fuzzy numbers as well as different methods for ranking of fuzzy num-

bers by a fuzzy extension of the classical MCDA method TOPSIS as an example. 

The paper presents the functional capabilities of the developed Decerns-FT computer system and its features, 

including the usability of fuzzy TOPSIS (FTOPSIS) models of various levels of complexity, depending on the 

chosen method of evaluating functions of fuzzy arguments and the method for ranking fuzzy numbers; it describes 

the general structure of the system and its major blocks. In this paper, the example of Decerns-FT implementation 

is presented to analyze distinctions in ranking alternatives within MCDA problems by different FTOPSIS models 

with the use of approximate methods for estimating functions of fuzzy numbers, standard fuzzy arithmetic, and a 

reduced and general transformation methods. For this, the Monte Carlo module is used to generate numerous 

scenarios for multi-criteria problems. Using the Decerns-FT system, it is shown for the first time that distinctions 

in the ranking alternatives by FTOPSIS models, which differ in approaches to estimating functions of fuzzy num-

bers and ranking methods, are significant. 

The developed computer system Decerns-FT has no analogs in the class of systems that implement FMCDA 

models. The modules of the Decerns-FT system form the basis for the development of other FMCDA systems, 

which are components of the DecernsFMCDA decision support system, designed to solve a wide range of scientific 

and applied problems of multi-criteria decision analysis in conditions of uncertainty/fuzziness, and also for the use 

within the relevant university courses and training of specialists. 

Keywords: Fuzzy numbers, Ranking of fuzzy numbers, Fuzzy multi-criteria decision analysis, Fuzzy TOPSIS, 

Fuzzy system, Decerns. 

 

Multi-criteria decision analysis (MCDA) designed to select "optimal" / compromise solutions (alternatives), 

their ranking, selection or sorting [1–3]. MCDA is an effective tool for decision support for the selection of rea-

sonable options for action [4–6]. 

In this paper, a Fuzzy MCDA model (FMCDA) refers to a fuzzy extension of an original (classical) MCDA method 

with the selected implementation of functions of fuzzy numbers (FNs) and a given method for ranking of FNs. 

Presently, there are various FMCDA models, including fuzzy extensions of such well-known MCDA methods 

as TOPSIS, PROMETHEE, and AHP [7, 8]. 

In this paper, we present a Decerns-FT system that implements a fuzzy extension of the classical TOPSIS 

method [9]. The first Fuzzy TOPSIS (FTOPSIS) model was created in 1992 [10]. Later, based on the classical 

TOPSIS method, various FTOPSIS models were developed [7, 11]. 

At the moment, there are commercial and academic Computer Decision Support Systems (DSSs) that imple-

ment MCDA methods. The review [3] considers 47 DSSs implementing such MCDA methods as AHP, 

ELECTRE, MAVT, MAUT, PROMETHEE, TOPSIS, etc., including DSSs for group decision making [12].  

We can also mention the academic system [13], which includes the FMCDA methods FuzzyVIKOR and 

FuzzyTOPSIS, for which 8 methods of FNs defuzzification are implemented [14]. This system is developed using 

PHP, MySQL, Ajax, and jQuery. FMCDA models in this system work with triangular and trapezoidal FN, lin-

guistic variables, and group decision analysis are also supported. 

At the same time, among the FMCDA models implemented in these systems, including the FTOPSIS models 

[11], none of the models uses different approaches to estimating functions of FNs and, accordingly, does not 

investigate the overestimation problem [15], including the problem of implementing dependent FNs in FMCDA 

models [16–18]. 

The need to implement and study the FTOPSIS models presented in [17] led to the development of the 

FuzzyLib library and the Decerns-FT FMCDA system. Exploring the influence of approaches to assessing func-

tions of FNs method and fuzzy ranking methods on the output results (ranks of alternatives) led to the development 
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of a module that allows implementing Monte Carlo methods to get statistical estimates of distinctions for multi-

criteria choice (only one, as a rule, "best" alternative is chosen) and ranking [2] (alternatives are ranked from "best" 

to "worst") problems when using different models of FMCDA. 

 

Fuzzy numbers and methods for ranking of fuzzy numbers 

 

The fuzzy set [19] extends the concept of a classical set, in which the membership function can take values  

in the segment (closed interval) [0, 1]. 

One of the key concepts in fuzzy set theory is the concept of an α-cut (alpha-cut). 

Definition 1. The -cut Z,   (0, 1], of a fuzzy set Z with the membership function µZ(x) on a universal set 

𝕏 is defined as follows: 𝑍α = {𝑥𝜖𝕏:  𝜇𝑍(𝑥) ≥ α}. 

There are several definitions of FN as a special kind of a fuzzy set with the additional specification of the 

property of α-cuts or the form of the membership function [15, 20–22]. This paper uses the most general definition 

of FN [23]. 

Definition 2. FN Z is a normal bounded fuzzy set in ℝ in which all the -cuts Z,   (0, 1], are segments. 

It should be added, fuzzy set/number Z is called normal if its -cut Z for  = 1 is not the empty set; FN Z is 

finite one if its support ( ) ( ) }0{ : Zsupp Z x x=     is a bounded set in ℝ; let us also emphasize that a set in ℝ 

consisting of a single point, in the context of Definition 2, is also considered as a segment. 

It follows from Definition 2 [23] that the closure of the FN Z is a segment,  1 2,supp(Z) c c= , and FN Z can be 

represented in the following way: 

- in the case of c1 < c2: 

Z = {(x, µZ(x)): µZ(x) > 0 if x (c1, c2), µZ(x) = 0 if x  [c1, c2]}             (1) 

- if c1 = c2, F NZ is a singleton, Z = c, with the membership function µZ(x) = {1, x = c; 0; x  c}. 

Note also that at points c1 and c2 (see expression (1)), the membership function µZ(x), in general, can take 

values from 0 to 1. 

Below, 𝔽 denotes the set of FNs according to definition 2. 

Taking into account Definition 2 and expression (1), each FN Z is uniquely represented by the set of its -cut 

sZ = [A, B],   (0, 1], and the segment [A0, B0] = [c1, c2] (also called, after the above explanations, the -cut 

for  = 0) [23,24]: 

Z = [A, B],   (0, 1]                        (2)  

Within FMCDA, so-called triangular and trapezoidal FNs (TrFNs and TpFNs, respectively) play an important 

role. TrFN Z is characterized by the membership function µZ(x), which has (geometrically) the form of a triangle 

with vertices (in the plane (x, y)) at points (a, 0), (b, 1), (c, 0), a ≤ b ≤ c and is denoted by the expression Z = (a, b, 

c). Similarly, TpFN Z = (a, b, c, d) is defined by four vertices, (a, 0), (b, 1), (c, 1), (d, 0). 

Fuzzy preference relations (FPR) play an important role in the comparison and ranking of FNs [23, 25, 26]. 

Definition 3. A fuzzy preference relation R is a fuzzy relation on 

𝔽 × 𝔽: 𝑅 = ((𝑍𝑖 , 𝑍𝑗), 𝜇𝑅(𝑍𝑖 , 𝑍𝑗)) in which the membership function µR(Zi, Zj)  [0, 1] represents (given in the 

framework of R) the degree of preference of Zi over Zj. 

The separate subclass form so-called reciprocal FPRs with the following property: 

µR(Zi, Zj) + µR(Zj, Zi) = 1.                       (3) 

Definition 4. The ranking of two FNs 𝑍𝑖, 𝑍𝑗 ∈ 𝔽 based on a reciprocal fuzzy preference relation R is defined 

as follows: 

𝑍𝑖 ≽𝑅 𝑍𝑗  𝑖𝑓 𝜇𝑅(𝑍𝑖 , 𝑍𝑗) ≥ 0.5; 𝑍𝑖 ≻𝑅 𝑍𝑗 𝑖𝑓 𝜇𝑅(𝑍𝑖 , 𝑍𝑗) > 0.5; 𝑍𝑖~𝑅𝑍𝑗  𝑖𝑓 𝜇𝑅(𝑍𝑖 , 𝑍𝑗) = 0.5 .     (4) 

Hereinafter, the following denotation will also be used: 

𝜇𝑖𝑗 = 𝜇𝑅(𝑍𝑖, 𝑍𝑗) = 𝜇𝑅(𝑍𝑖 ≥ 𝑍𝑗) = 𝜇𝑅(𝑍𝑗 ≤ 𝑍𝑖).                 (5) 

Ranking of FNs represents a key concept in FMCDA. Methods for ranking of FNs can be grouped into three 

main classes [14,27]. 

1. Ranking methods based on defuzzification of FNs. In these methods, the FNs are represented by the corre-

sponding real numbers with their subsequent ranking [14,24,27-30]. In this paper, we use the following two de-

fuzzification-based FNs ranking methods that are in demand in applications. 

Centroid Index (CI) (or Center of Gravity) ranking method. 

For FN Z, defuzzification based on the CI method is performed according to the following expression: 

𝐶𝐼(𝑍) =
∫ 𝑥μ𝐴(𝑥)𝑑𝑥

∫ μ𝐴(𝑥)𝑑𝑥
                         (6) 

For singleton Z = c, CI(Z) = c. 

Integral of Means (IM) ranking method. 

Under this method, defuzzification of FN Z = {[A, B]} is based on assessing the following expression: 

𝐼𝑀(𝑍) =
1

2
∫ (𝐴α + 𝐵α

1

0
)𝑑α                       (7) 
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For these methods, ranking of FNs is performed in the following way: the higher the defuzzified value, the 

higher the rank. The ranking of real numbers is implemented using one of the sorting algorithms. The developed 

system uses a quick sort algorithm. 

2. Ranking methods based on estimating the distance to the reference fuzzy set. In these methods, a reference 

fuzzy set is defined, and for each FN from a given set of FNs, the distance to the reference set is calculated based 

on the used method. The definition of the reference set is often based on the FNs under consideration [14, 24]. 

Ranking methods of this class are not used in this paper. 

3. Ranking methods based on the pairwise comparison. The ordering of a finite set of FNs, in this case, is based 

on their pairwise comparison. This class is represented by the largest number of FNs ranking methods [27, 30].  

In this paper, we use one of the methods for ranking of FNs from this class, based on the Yuan's fuzzy preference 

relation (Y) [26, 27], which is effectively implemented using alpha-cuts of FN. The Yuan’s FPR can be summa-

rized as follows in the form implemented within our research and developments [16–18]. 

Consider FN 𝑍𝑖 = {[𝐴α
𝑖 , 𝐵α

𝑖 ]},  𝑍𝑗 = {[𝐴α
𝑗

, 𝐵α
𝑗
]} ∈ 𝔽и𝑍𝑖𝑗 = 𝑍𝑖 − 𝑍𝑗 = {[𝐴α, 𝐵α]}. Within the Yuan’s  FPR 𝑅𝑌 = 

= ((𝑍𝑖 , 𝑍𝑗), 𝜇𝑌(𝑍𝑖, 𝑍𝑗)), the area 𝑆𝑌
+ is considered as the "distance" from the positive part of the FN Zij = {[A, 

B]} to the axis (OY), which is defined as follows [16]: 

  𝑆𝑌
+(𝑍𝑖𝑗) = ∫ (𝐵αθ(Bα) + 𝐴αθ(𝐴α))𝑑α

1

0
,                   (8) 

Here θ(𝑥) is the Heaviside function: θ(𝑥) = {1, 𝑥 ≥ 0;  0, 𝑥 < 0}. The total adjusted area under the member-

ship function of Zij is estimated by the expression [16, 26]: 

𝑆𝑌(𝑍𝑖𝑗) = 𝑆𝑌
+(𝑍𝑖𝑗) + 𝑆𝑌

+(𝑍𝑗𝑖) = ∫ (|𝐵α| + |𝐴α|)𝑑α
1

0
.                (9) 

Definition 5. Let 𝑍𝑖 , 𝑍𝑗 ∈ 𝔽 and Zij = Zi – Zj The Yuan’s FPR, 𝑅𝑌 = ((𝑍𝑖 , 𝑍𝑗), 𝜇𝑌(𝑍𝑖 , 𝑍𝑗), in which 𝜇𝑖𝑗 = 

= 𝜇𝑌(𝑍𝑖 , 𝑍𝑗) represents the degree of preference of Zi over Zj [26], is defined as 

𝜇𝑌(𝑍𝑖, 𝑍𝑗) = 𝑆𝑌
+(𝑍𝑖𝑗) 𝑆𝑌(𝑍𝑖𝑗)  𝑖𝑓  𝑆𝑌(𝑍𝑖𝑗) > 0⁄                     (10) 

and 𝜇𝑌(𝑍𝑖 , 𝑍𝑗) = 0.5  𝑖𝑓  𝑆𝑌(𝑍𝑖𝑗) = 0. 

It should be stressed this definition is also valid in the case when Zi and Zj are singletons.  

The following statements follow directly from definition 5: 

𝜇𝑌(𝑍𝑖, 𝑍𝑗) = 𝜇𝑌(𝑍𝑖 − 𝑍𝑗 , 0);  𝑍1 ≽𝑌 𝑍2 𝑖𝑓𝑓 (𝑍1 − 𝑍2) ≽𝑌 0.                 (11) 

The Yuan’s FPR is reciprocal and transitive [26]. 

To rank FNs using Yuan’s FPR, a quick sort algorithm is used, where comparisons of FNs (as for real numbers) 

is based on calculating the difference between two quantities (based on relations (4)). 

The Decerns-FT system implements also ranking of FNs based on the FRAA (Fuzzy Rank Acceptability Anal-

ysis) concept [16,31] using (within the FRAA framework) the Yuan’s FPR. It is proved [16], Yuan’s and  FRAAY 

ranking are equivalent. However, FRAA ranking of FNs (alternatives within an FMCDA problem) allows for each 

pair r and k (1 ≤ r, k ≤ n, where 𝑛 is the number of considered FNs/alternatives) to determine the fuzzy measure 

(confidence level, Fuzzy Rank Acceptability Index) that FN/alternative k has the rank r.  

One of the key concepts of the FMCDA is the implementation of functions of FNs. 

Let 𝐺 ⊆ ℝ𝑛, 𝑓: 𝐺 → ℝ is a real function. The extension of the function = f (x1, …, xn) to the function = f (Z1, 

…, Zn) of fuzzy arguments, when FN Zi is used instead of real numbers 𝑥𝑖, is defined on the basis of Zadeh's 

extension principle [21,24,32]: membership function of FN Z = f (Z1, …, Zn) is defined by the expression: 

𝜇𝑍(𝑧) = ⋁ (⋀ 𝜇𝑍𝑖
(𝑥𝑖)𝑖=1,…,𝑛 )𝑧=𝑓(𝑥1,…,𝑥𝑛) ,                      (12) 

𝑧 ∈ ℝ; and 𝜇𝑍(𝑧) = 0 if the preimage of the point z is empty: 𝑓−1(𝑧) = ∅ (here 𝑎⋀𝑏 = min(𝑎, 𝑏), 𝑎⋁𝑏 = 
= max (𝑎, 𝑏); 𝑎, 𝑏 ∈ ℝ). However, direct application of the expansion principle based on expression (12) is inef-

ficient even for simple functions. To calculate a function of FNs, we use approximate calculations, standard fuzzy 

arithmetic (SFA), and transformation methods (TMs) [15]. 

Below, we give an example of the overestimation problem that occurs when using SFA (including approximate 

calculations that represent a narrowing of SFA to its use on the -cut  = 1 and, for  = 0, on the segment  

[A0, B0], see the representation of FN (2)). Consider the positive FNs A, B and functions 

𝑍𝑂 = (𝐴 + 𝐵)/𝐴,     𝑍𝑇 = 1 + 𝐵/𝐴                        (13) 

that are fuzzy extensions of real functions 

𝑓1(𝑎, 𝑏) =
𝑎+𝑏

𝑎
,     𝑓2(𝑎, 𝑏) = 1 + 𝑏/𝑎                       (14) 

Obviously, for the real numbers 𝑎, 𝑏, 𝑎 ≠ 0, 𝑓1(𝑎, 𝑏) ≡ 𝑓2(𝑎, 𝑏). At the same time, using SFA, supp(ZT)   

 supp(Z0), Figure 1. 

The overestimation problem arises when there are dependent variables in the fuzzy expression under consid-

eration [15,18]: in (13) for the case of Z0, the dependent variables are the numerator, A + B, and the denominator, 

A. At the same time, f1 and f2 (13) are equivalent, so the estimates of Z0 and ZT based on the extension principle 

(the proper estimate of the function of FNs) are also equivalent and, in the cases under consideration, coincide 

with ZT. We add also that the use of TM to assess Z0, as well as the use of SFA to calculate ZT, leads to the proper 

evaluation of these expressions. 
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To overcome the problem of dependent 

variables when calculating the proper result 

of a function f (Z1, …, Zn), as well as to cal-

culate the output value for non-monotonic 

real functions f (x1, …, xn), transformation 

methods (TMs) can be used, which are one 

of the variants of interval computing on  

α-cuts. TMs are described in detail in [15]. 

Let's consider a real continuous function 

𝑓(𝑥1, … , 𝑥𝑛), 𝑓: ℝ𝑛 → ℝ, and its fuzzy ex-

tension, i.e., the function f (Z1, …, Zn), 

where Zi, i = 1, …, n, are FNs. 

Implementing the main options of TMs 

can be represented as follows. 

1. If the real function f (x1, …, xn) is mon-

otone for every xi, i = 1, …, n, in the segment 

𝑈𝑖 = [𝐴0
𝑖 , 𝐵0

𝑖 ], i.e., for differentiable functions, 𝜕𝑓/𝜕𝑥𝑖 does not change its sign in the segment Ui (for fixed values 

of other variables in the corresponding segments 𝑈𝑗 , 𝑗 ≠ 𝑖), the Reduced Transformation Method (RTM) is used: 

for each  [0, 1], segments 𝑍a
𝑖 = [𝐴𝑎

𝑖 , 𝐵𝑎
𝑖 ]are considered and the values of Y = f (X1, …, Xn) are calculated for all 

combinations of {X1, …, Xn}, where Xi is one of the boundary points of the segment 𝑍𝑎
𝑖 , i.e. 𝑋𝑖 ∈ {𝐴𝑎

𝑖 , 𝐵𝑎
𝑖 }, with 

subsequent estimation of the minimum and maximum values of Y for the formation of -cut Z = [A, B] of the 

estimated FN Z = f (Z1, …, Zn). 

2. If the function f (x1, …, xn) is not monotonic for every𝑥𝑖 in the segment Ui, the General Transformation 

Method (GTM) is applied: for each -cut, values Y = f (X1, …, Xn) are calculated for all combinations {x1, …, xn},  

where Xi is one of the N points in the segment [𝐴𝑎
𝑖 , 𝐵𝑎

𝑖 ], for this segment [𝐴𝑎
𝑖 , 𝐵𝑎

𝑖 ]is divided into N – 1 intervals 

(according to a special algorithm) by points 𝐶1, … , 𝐶𝑁α−2, i.e., 𝑋𝑖 ∈ {𝐴𝑎
𝑖 , 𝐶1, … , 𝐶𝑁𝑎−2, 𝐵𝑎

𝑖 }; then minimum and 

maximum of the calculated values Y are taken to form the -cut Z = [A, B]. 

We add that RTM can also be used in this case as a simplified approach; at the same time, it is necessary to 

increase the number of used -cuts. 

3. In the general case, the function f (x1, …, xn) can be monotonic regarding the variables xi in the segments Ui, 

i = 1, … n1, and non-monotonic regarding the other variables in the corresponding segments. Here, to reduce the 

time of calculation, instead of GTM, Extended TM (ETM) is used: for "monotone variables" xi, RTM is imple-

mented, for the remaining variables, GTM is used. 

Despite some approximation, we will call the output value Z, obtained based on a correct application of TM, 

the proper value for the function of FNs. 

According to the algorithms RTM and GTM, the amount of the operations when calculating FN Z = f (Z1, …, 

Zn) and, consequently, running time of algorithms can be represented as O(Nkn), where 𝑘 is the maximum number 

of points used in -cuts, N is the number of -cuts; within RTM, k = 2. To significantly reduce the computing 

time for implementing FMCDA models, including one within the Decerns - FT system, the process of parallel 

calculations is implemented. 

 
FTOPSIS models 

 
This section describes various models of FTOPSIS as a fuzzy extension of the classical TOPSIS method. 

The FTOPSIS model implies the implementation of the following basic steps [17,18]. 

Step 1. Defining alternatives Aj, i = 1, 2, …, and criteria Cj, j = 1, 2, …, m; forming a performance table {Cij}, 

where Cij is a (fuzzy) value of the criterion Ci for alternative Ai. As a rule, within FMCDA problems, TrFNs and 

TpFNs are used. It is also possible to use linguistic variables (LV) and FNs of a general type; 𝐶𝑖𝑗 = {[𝐴𝑎
𝑖𝑗

, 𝐵𝑎
𝑖𝑗

]}; 

wj - (fuzzy) weight coefficient of the criterion 𝐶𝑗,  𝑤𝑗 = {[𝐴𝑎
𝑗

, 𝐵𝑎
𝑗
]}. 

Step 2. Normalization of Cij values. For criteria values, 𝐶𝑖𝑗 = {[𝐴𝑎
𝑖𝑗

, 𝐵𝑎
𝑖𝑗

]}, we evaluate the following boundary 

values: 

𝐵0
0𝑗

= max
𝑖=1,…,𝑛

𝐵0
𝑖𝑗

,    𝐴0
0𝑗

= min
𝑖=1,…𝑛

𝐴0
𝑖𝑗

.                       (15) 

Normalization is the conversion of criteria values to dimensionless scale: Cij → xij. For benefit criteria  

(the more, the better), it applies the following normalization procedure: 

𝑥𝑖𝑗 = (𝐶𝑖𝑗 − 𝐴0
0𝑗

) (𝐵0
0𝑗

⁄ − 𝐴0
0𝑗

);                        (16) 

for cost criteria (the less, the better): 

𝑥𝑖𝑗 = (𝐵𝑖𝑗 − 𝐶0
0𝑗

) (𝐵0
0𝑗

⁄ − 𝐴0
0𝑗

),                        (17) 

 
 

Fig. 1. An example of the overestimation (SFA is implemented):  

FN Z0 and ZT (13); A, B are TrFNs: A = (1, 2, 5), B = (0.5, 4, 5) 
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Thus, for FN𝑥𝑖𝑗 ,    𝑠𝑢𝑝𝑝(𝑥𝑖𝑗) ⊆ [0,1], and in the dimensionless 𝑥-scale, all criteria are positive. 

Step 3. Choose the "ideal" and "anti-ideal" alternatives. The "ideal", I +, and "anti-ideal", I –, alternatives  

in m-dimensional space (m is the number of criteria) are defined as follows: 

𝐼+ = (1, … ,1),    𝐼− = (0, … ,0).                         (18) 

The choice of these (global) "ideal" and "anti-ideal" alternatives [17] greatly simplifies the process of assessing 

functions of FNs within FTOPSIS. 

Step 4. Determine the distances for each alternative Ai from the "ideal", 𝐷𝑖
+, and" anti-ideal", 𝐷𝑖

−,  alternatives. 

In the normalized criteria space, the weighted distance from the alternative xi = (xi1, …, xim) (with fuzzy values xij) 

to the "ideal", I +, and "anti-ideal", I –, alternatives is determined by the following expression: 

𝐷𝑖
+ = 𝑑(𝑥𝑖 , 𝐼+) = (∑ 𝑤𝑘

𝑝
(𝑥𝑖𝑘 − 𝐼𝑘

+)𝑝)
1

𝑝⁄ = (∑ 𝑤𝑘
𝑝

(1 − 𝑥𝑗𝑘)𝑝)
1

𝑝⁄ ,               (19) 

𝐷𝑖
− = 𝑑(𝑥𝑖 , 𝐼−) = (∑ 𝑤𝑘

𝑝
(𝑥𝑖𝑘 − 𝐼𝑘

−)𝑝)
1

𝑝⁄ = (∑ 𝑤𝑘
𝑝

𝑥𝑖𝑘
𝑝

)𝑝)
1

𝑝⁄  ,                (20) 

where 𝐷𝑖
+ and 𝐷𝑖

− are FNs. In this paper, we consider the classical case with the value p = 2. 

Step 5. The generalized criterion (coefficient of closeness) Zi for the alternative Ai is determined by the expres-

sion 

𝐷𝑖 = 𝐷𝑖
− (𝐷𝑖

− + 𝐷𝑖
+)⁄ ,                           (21) 

𝐷𝑖 = (∑ 𝑤𝑘
𝑝

𝑥𝑖𝑘
𝑝

)
1

𝑝⁄ ((∑ 𝑤𝑘
𝑝

𝑥𝑖𝑘
𝑝

)
1

𝑝⁄ ) + (∑ 𝑤𝑘
𝑝

(1 − 𝑥𝑖𝑘)𝑝)
1

𝑝⁄ )⁄ ,                (22) 

FNs wk and xik occur in the numerator and in the denominator, which leads to the overestimation when using 

SFA. To determine the proper value of Di (22), the RTM can be used. 

Step 6. Ranking of alternatives is based on ranking of FNs Di, i = 1, …, n (22). 

Depending on the methods used for estimating functions of FNs and ranking FNs, the following models can 

be used. 

FTTr model (Fuzzy TOPSIS with Triangular Fuzzy Numbers, TrFNs), where approximate calculations are 

used to get a generalized criterion Di and the difference Dij = Di – Dj. The FTS (Fuzzy TOPSIS with Standard 

Fuzzy Arithmetic) model, where standard fuzzy arithmetic is used to get the generalized criterion Di and the dif-

ference Dij = Di – Dj. The FTR model (Fuzzy TOPSIS with Reduced Transformation Method, RTM), where RTM 

is used to assess generalized criterion 𝐷𝑖(expression (22)) and the difference Dij = Di – Dj. 

Depending on the used ranking method, there are the FTTrCI and FTTrIM models, where the CI and IM meth-

ods are used to rank alternatives, respectively; the FTSCI, FTSIM, FTRCI, FTRIM models, and the FTRY model, 

where the Yuan’s (Y) ranking method is used. It is worth noting that the implementation of the FTRY model, 

because of the use of TM for calculations requires much more time in comparison with other models. 

 
Computer System Decerns-FT 

 
This section describes the structure of Decerns-FT system, and the application of the system to investigate the 

distinctions of FTOPSIS models described in earlier. 

The structure of Decerns-FT 

To implement FTOPSIS fuzzy models used in the Decerns-FT system, and the module for comparing fuzzy 

models based on Monte Carlo simulation, the FuzzyLib library was developed. It implements the library in the 

Java programming language. Figures 2 and 3 show the UML class diagram of the developed FuzzyLib library. 

The "Fuzzy Math and Ranking" category includes classes that implement the process of calculating functions 

of FNs and FNs ranking. 

1. The PRanking and DRanking classes implement ranking methods based on pairwise comparisons and de-

fuzzification, respectively. The PRankingclass includes the pairwiseCompare method, which is designed for pair-

wise comparison of FNs. As arguments, it takes an array of fuzzy numbers fuzzySets and an object of the Pair-

wiseComparison class, which implements the comparison of a pair of FNs. The FRAA method [16] implements 

the FRAA procedure for ranking a set of FNs based on the pairwiseCompareTable, which outputs an array  

of generated objects of the PRank class. The object of the PRank class contains a field denoting the rank defined 

by the FRAA method and the FRAI rankmembershipvalue array. The DRanking class includes a ranking method 

designed to rank of FN fuzzySets based on the defuzzification method of the Defuzzification class object  

(dm argument). The output is an array of objects of the DRank class, which contains the rank number, the value 

of the dValue defuzzification method, and FN of fSet. 

2. The fuzzymath class. This class implements methods for evaluating functions of FNs. As input arguments, 

it takes an expression built based on objects of the Node class in the tree type. 

Each descendant of the Node class implements the evaluateTM and evaluateAC methods to calculate the input 

values individually (which is required in the RTM and GTM methods) or alpha-cuts as a whole (approximate 

calculation methods and standard fuzzy arithmetic). Objects of the VariableNode class using fuzzySetName allow 

to get an alpha-cut or the FN value considered by the transformation method from the fuzzySetValues argument. 

The Utility category includes classes describing the FNs (FuzzySet and its descendants), a mathematical func-

tion class (this class is required for obtaining alpha-cuts of a FN and evaluating integrals in the CI, IM,  
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and Y (Yuan’s) ranking methods, and some other classes (for example, the AlphaCut class, which includes a 

method for determining auxiliary points in the GTM method and methods for evaluating basic mathematical  

operations, including addition, subtraction, division, multiplication, etc., using approximate calculations and stand-

ard fuzzy arithmetic). 

The conceptual scheme of the Decerns-FT system, and the main modules of the FuzzyLib library, are presented 

in Figures 4 and 5, respectively. 

The graphical interface of Decerns-FT includes modules for implementing the next steps in solving an FMCDA 

problem [17]. 

1. The value tree formation [33]. 

2. In the feature table, fuzzy values of criteria for the considered alternatives are set; the types of FNs mem-

bership functions used in Decerns-FT are shown in Figure 6, respectively: singletons, triangular, trapezoidal, piece-

wise linear (continuous, upper continuous), Gaussian, piecewise linear upper semi-continuous, bell-shaped, and 

FNs with sigmoid membership functions. 

3. Setting fuzzy weight coefficients using the FSwing method [31] or the direct waiting method. Figure 7 

shows an example of setting weights using FSwing. 

4. Applying FTOPSIS models to solve a multi-criteria problem. The Decerns-FT system includes fuzzy models 

described in Section 3, see also Figure 4.  

The adapted version of the desktop Decerns-FT system is also a subsystem of the modified and extended ver-

sion of the DecernsMCDA [33, 34], which includes the following classical MCDA methods: MAVT, TOPSIS, 

AHP, PROMETHEE, MAUT, ProMAA, and FlowSort. 

 
 

Fig. 2. Fuzzy Math and Ranking Class category of the FuzzyLib library 
 

 
 

Fig. 3. Utility class category of the FuzzyLib library 
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Decerns-FT 

Tools Fuzzymodels 

Value tree 

Performance table 

Pareto dominance 

1. FTTrCl 

2. FTTrIM 

3. FTSCl 

4. FTSIM 

5. FTRCl 

6. FTRIM 

7. FTRY 

 

Types of membership  

functions for FNs 

Methods for setting 

weight coefficients 

Triangular FNs 

Trapezoidal FNs 

Piecewise linear FNs 

Gaussian, bell-shaped,  

sigmoid FNs 

The direct method 

FSwing method 

Fig. 4. Conceptual diagram  

of the Decerns-FT system 
 

FuzziLib 

Methods  

for ranking FNs 

Fuzzy models  

FTOPSIS 

Method for estimating  

a function of FNs 

Ranking based  

on defuzzification 

1. FTTrCl 

2. FTTrIM 

3. FTSCl 

4. FTSIM 

5. FTRCl 

6. FTRIM 

7. FTRY 

Approximate  

calculations 

1. Centroid Index (CI) 

2. Integral of Means 

(IM)  

3. Median method 

Standard Fuzzy  

Arithmetic 

Ranking based  

on pairwise  

comparisons 

Transformation  

methods 

(RTM, GTM) 

1. The Yuan’s  

method (Y) 

2. FRAA method 

 Monte Carlo 

algorithms 

 

Fig. 5. FuzzyLib library 
 

 

  

Fig. 6. Types of fuzzy numbers used  

in Decerns-FT 

Fig. 7. Setting weights by FSwing in Decerns-FT 

 
Comparison of FTOPSIS models using the Monte Carlo simulation 

 
Consider the module for comparing FTOPSIS models implemented in Decerns-FT using Monte Carlo algo-

rithms. The comparison is made by the number of distinctions in ranks of alternatives formed based on Monte 

Carlo simulation within the generated scenarios of fuzzy multi-criteria problems. 

In this paper, there is a comparison of the ranks of alternatives according to FTRY model with the ranks by 

FTTrIM, FTSIM, FTRCI, and FTRIM models, Tables 1–3. 

The paper considers the FMCDA problems with m = 4 criteria n = 4 alternatives. Based on Monte Carlo algo-

rithms, 5000 iterations are generated, each of which generates a multi-criteria problem scenario. At the same time, 

we study both the multi-criteria choice problem (only the rank r1 = 1 is considered) and the ranking problem  

(all ranks r2 = {1, …, 4} are taken into account). Within the scenario, using TrFNs in the segment [0, 1], a perfor-

mance table is generated (the values of alternatives according to criteria) along with  weight coefficients using a 

uniform distribution in [0, 1].In this paper, three variants of TrFNs are generated: symmetric TrFNs (v = 1), gen-

eral/non-symmetric TrFNs (v = 2), and terms of the linguistic variable (based on the seven-term scale of TrFNs in 

[0, 1]) (v = 3) [23]. For each scenario (t = 1, …, Nmax = 5000) and variant/form of TrFNs (v = 1, 2, 3) and for the 

specified fuzzy model Mk, the ranks of alternatives were evaluated and compared with the ranks of the basic model 

M0 (FTRY).Number of distinctions, D(t + 1; Mk, rl, v), t = 0, 1, …, Nmax – 1; k = 1, …, 4; l = 1, 2; v = 1, 2, 3, at 

each iteration for the compared pair increased by one if a distinction was found in at least one of the ranks of the 

sets r1 or, respectively, r2: D(t + 1; Mk, rl, v) +1, if there was no distinction in rank at iteration t + 1, then D(t + 1; 

Mk, rl, v) = D(t; Mk, rl, v). The frequency of distinctions in the ranks of alternatives when using different FTOPSIS 

methods (statistical assessment of the probability of distinction) was defined as p = D(Nmax; Mk, rl, v)/Nmax;  

D(0; Mk, rl, v) = 0. Note that estimates of distinctions were also made for the intermediate number of iterations 

Nmax = 1000; the latter indicates the level of distinctions in the ranks of alternatives with an increase in the (maxi-

mum) number of iterations. A detailed description of the algorithm for assessing distinctions and corresponding 

features is described, for example, in [35–37]. The frequency of distinctions depends on the dimension of the 

MCDA problem (i.e., on the number of criteria and alternatives); if the dimension of the MCDA problems 
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increases, the percentage of differences also increases [35–37]. In the developed module (in the settings), the 

number of -cutsN to analyze the degree of influence of the number of α-cuts on the output results can be speci-

fied; in Tables 1–3, N = 15. 

Analysis of distinctions in ranking of al-

ternatives by FTOPSIS models (Tables 1, 2) 

shows that the influence of the shape of the 

input FNs used (symmetric/asymmetric 

TrFNs) is insignificant; the exception is the 

distinctions between the basic model and 

the FTRCI model for asymmetric TrFNs  

(in contrast to the FTRIM model, which dif-

fers from the previous one only by the rank-

ing method). According to the estimates, 

distinctions in ranks of alternatives  

for FTOPSIS models are significant both 

for ranking problems (82–90 %) and for the 

choice problem (57–68 %). With increasing 

the precision for assessing functions of 

FNs, from FTTrIM as the least accurate 

(based on approximate calculations based 

on propagation of TrFNs through the whole 

chain of calculations), to FTSIM as more 

accurate model (with the use of SFA, but 

not consider the dependence of FNs, in con-

trast to models with the use of TM: model 

FTRY and models FTRCI and FTRIM) dis-

tinctions are reduced. Distinctions in rank-

ing when comparing the basic model with 

the "proper" models, FTRCI and FTRIM, 

can be considered, when using as input 

symmetric FNs (such FNs, as a rule, are 

used in applied problems), as small/insig-

nificant (about 3.5 %) for problems of multi-criteria choice and "conditionally acceptable" (9–12 %) for problems 

of ranking alternatives. 

The least of differences in ranks of alternatives for these FTOPSIS models were noted when using linguistic 

variables (which is very popular in the framework of FMCDA [7, 30]) (Table 3). For models with an approximate 

approach to the calculating functions of FNs (FTTrIM and FTSIM), we can consider the distinctions for the choice 

problems as acceptable (5–8.5 %), while for the ranking problems (15–23 %), we can characterize the distinctions 

as significant. For models with the "proper" calculations, FTRCI and FTRIM, the distinctions in ranks are quite 

small, both for choice problems (0.4–1.1 %) and for ranking problems (1.8–3.7 %), which in terms of uncer-

tainty/fuzziness is quite an acceptable discrepancy in the framework of decision analysis problems. 

Thus, the developed Decerns-FT system makes it possible not only to solve applied multi-criteria problems 

[17] but also to conduct scientific research within FMCDA [18, 36]. 
 

Conclusion 
 

An analysis of existing publications in the field of fuzzy MCDA (FMCDA) shows that all the known papers 

use approximate methods for estimating functions of fuzzy numbers and, as a rule, one method for ranking fuzzy 

numbers based on the use of the centroid index (CI). 

The paper presents the original Decerns-FT system for solving practical [17] and research [18, 36] problems  

of multi-criteria decision analysis (MCDA) under conditions of uncertainty/fuzziness. The system implements 

various methods for evaluating functions of fuzzy arguments and several methods for ranking of fuzzy numbers. 

The developed Decerns-FT system allowed us to show for the first time [36] that estimates of the ranks of 

alternatives based on approximate FMCDA models can significantly differ from the corresponding estimates with 

the use of more accurate models, which implement the transformation method. 

The developed library of modules allows using the system for solving a wide range of applied and research 

problems of FMCDA. The adapted version of the desktop Decerns-FT system is also one of the subsystems of the 

fuzzy decision support system DecernsFMCDA under creation, which is a further development of the 

DecernsMCDA system [33] for solving MCDA problems. Algorithms and modules implemented in Decerns-FT 

are also used in the development of systems (as components of the DecernsFMCDA integrated system), which are 

fuzzy extensions of such MCDA methods as PROMETHEE, MAVT, FlowSort, and others. 

Table 1 

Relative frequency of distinctions (%) in ranking alternatives  

between FTTrIM, FTSIM, FTRCI, FTRIM and the FTRY base 

model for ranks 1/(1–4). Criteria values and weigh  

coefficients are asymmetric TrFNs 
 

Number of iterations FTTrIM FTSIM FTRCI FTRIM 

N1 =1000 70.8/90.2 58/83.1 10/26.4 2.4/8.7 

N2 =5000 68.5/89.3 57.2/82.6 9/26.1 2.9/8.9 
 

Table 2 
 

Relative frequency of distinctions (%) in ranking alternatives be-

tween FTTrIM, FTSIM, FTRCI, FTRIM and the FTRY base 

model for ranks 1/(1–4). Criteria values and weight  

coefficients are symmetric TrFNs 
 

Number of iterations FTTrIM FTSIM FTRCI FTRIM 

N1 =1000 72.4/89.7 63.1/84.5 3.4/11 2.1/8.3 

N2 =5000 61.4/90.2 62.7/84.4 3.44/12.1 2.5/9.3 
 

Table 3 
 

Relative frequency of distinctions (%) in ranking alternatives be-

tween FTTrIM, FTSIM, FTRCI, FTRIM and FTRY base model 

for ranks 1/(1–4). Criteria values and weight  

coefficients are terms (TrFNs) of the linguistic variable 
 

Number of iterations FTTrIM FTSIM FTRCI FTRIM 

N1 =1000 7.7/21.4 4.6/15 0.7/3.3 0.4/2.2 

N2 =5000 8.5/22.7 5.4/15.3 1.1/3.7 0.4/1.8 
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В основе нечеткого многокритериального анализа решений (НМКАР) лежат операции оценки функций 

от нечетких аргументов и ранжирования нечетких чисел. В общем случае реализация каждой из указанных 

операций требует использования соответствующих компьютерных модулей. Все известные на настоящее 

время системы НМКАР базируются на приближенных оценках функций от нечетких аргументов. Целью 

представленной работы является создание и научно-практическое применение системы НМКАР, 
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реализующей все основные подходы к оценке функций от нечетких чисел, а также различные методы ран-

жирования нечетких чисел на примере нечеткого расширения классического метода многокритериального 

анализа решения TOPSIS. 

В работе представлены функциональные возможности разработанной компьютерной  системы Decerns-

FT и ее особенности, включающие возможность использования нечетких моделей FTOPSIS различного 

уровня сложности в зависимости от выбранного метода оценки функций от нечетких аргументов и метода 

ранжирования нечетких чисел. Описана общая структура системы и ее основные блоки. Приведен пример 

использования Decerns-FT для анализа различий в ранжировании альтернатив многокритериальных задач 

разработанными моделями FTOPSIS с применением приближенных методов оценки функций от нечетких 

чисел, методов стандартной нечеткой арифметики, а также редуцированного и общего метода трансфор-

мации. В рамках решения данной задачи используется модуль Монте-Карло для генерации большого числа 

сценариев многокритериальных задач. С использованием системы Decerns-FT впервые показано, что раз-

личия в ранжировании альтернатив многокритериальных задач моделями FTOPSIS, отличающимися под-

ходами к оценке функций от нечетких чисел и методами ранжирования, являются значимыми. 

Разработанная компьютерная система Decerns-FT не имеет аналогов в классе систем, реализующих мо-

дели НМКАР. Модули системы Decerns-FT формируют основу для создания других систем НМКАР, яв-

ляющихся компонентами системы поддержки принятия решений DecernsFMCDA, предназначенной для 

решения широкого круга научно-прикладных задач многокритериального анализа решений в условиях не-

определенности/нечеткости, а также для использования в рамках соответствующих университетских кур-

сов и для тренинга специалистов. 

Ключевые слова: нечеткие числа, ранжирование нечетких чисел, нечеткий многокритериальный ана-

лиз решений, Fuzzy TOPSIS, нечеткая система, Decerns. 
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