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This paper presents an experiment in the computer vision zone aimed at automatization the neural network
training to recognize industrial objects on the example of turbo pump unit parts for the RE-120 rocket engine.
To train the neural network, the authors used both a data set consisting of photos of already existing parts
and a set of images from a CAD-program that simulates the design stage of the required product.

By comparison of test results, it confirmed the hypothesis it is possible to train computer vision systems
to distinguish not yet existing objects based on screenshots of their digital counterparts (CAD-models). By col-
lecting the required data before direct production of the product, it is possible to achieve good recognition rates
even for an actual object with simple geometry.

The paper presents the results of the application of this method in comparison with the traditional teaching
approach, and also considers the perspectives for using this technology in the industry.
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Aerospace industry and aircraft engine building are rated among less robotic industries.

Several reasons can explain this:

— structural complexity of the product (the presence of many small parts that make installation difficult
by robots);

— prime requirements for the performance;

— availability of intermediate control (often with the help of complex equipment);

— small scale interchangeability of parts and components.

These requirements severely restrict the ability to automate production and installation processes or make them
inefficient. Therefore, manual labor is still used in the assembly, although it creates certain risks because
of people’s mistakes. The effect of the human factor remains significant, despite the regular professional develop-
ment of specialists, their training, as well as documentary and production control.

Therefore, there is a problem of monitoring assembly processes and people's work in actual time to minimize
negative consequences. To solve it, we propose to use computer vision.

This raises several questions: whether it is possible to apply computer vision at the stages of the technological
process and in the people actions during the execution of an operation, how to train such a model to recognize all
the required actions [1] and whether this process can be automated.

The source analysis

Nowadays, there is a vast amount of materials devoted to object recognition algorithms, their libraries, and the
results got in various industries. Special attention in the research has been given to defectoscopy and the use of
machine vision at enterprises. The programs are developed specifically for the practical application of the technol-
ogy of object recognition in a video (or photo) with actual objects.

For example, when working with microelectronics, it is very important to recognize the components of the
board and inspect them visually for defects. A team of researchers led by Baigin proposed their own machine
vision system based on the Otsu method and the Hough transform [2]. Sometimes more complex problems require
the use of non-standard approaches. One example is the system for recognizing defects in Stozhanovich's textiles
[3]. Its peculiarity is that neural networks are used to search for a defect in actual time. For 2001, this was a big
breakthrough. For more successful recognition, it pays special attention to the preprocessing process. A carefully
developed concept of using preprocessing can be found in Sartak, whose program allows you to get images of
defective parts with high accuracy and sort them using the TensorFlow library [4]. Neural networks are becoming
an increasingly popular tool in the industry, combining different approaches to solve problems, for example, in the
case of identifying the geometry of parts [5].
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Problem formulation

The design process is constantly changing. It reflects this in the design documentation. The item (node, item)
passes the stage of approval and is supplied to the production. If the installation is not possible, documents are
created to correct defects, and the design process is started again until the object is installed in the specified location
according to the technical problem. Accordingly, it is necessary to create a recognition model that can identify
assembly units in photos (or videos) before the physical creation of parts [6].

Initial data
Table 1 As a sample, there was a turbo pump (TP) of a rocket engine
Details and their symbols (Fig. 1). _ . N
Assembly/disassembly of the TP comprises 10 positions:
Item Symbol housing assembly, turbine rotor, retainer, screw (x2), impeller,
Nut 12 nut 12 conveyor screw, large nut, large reflector, small reflector, small
Nut 15 nut 15 nut. These names are conditional and are used only within the
Screw 11 shnek 11 framework of laboratory work (Tabl. 1). The numbers in the name
Reflector 14 reflect 14 show the number in the assembly sequence in the lab form
Turbine rotor 16 [turbRotor 16 (Fig. 2).

It bases part selection on the requirements for recognition
models. It is necessary to check whether it can distinguish between objects:

— with different geometries;

— with approximately the same geometry;

— several ones at once.

Thus, there were the following groups of parts:

—small nut and screw;

—small nut and large nut;

—small nut, screw, small reflector, and turbine rotor.

To test the recognition capability, we selected the following groups of initial data: screenshots of models and
a mixture of screenshots of parts with their photos (Fig. 3). Thus, we tested the hypothesis it is possible
to form a data set at the design stage (using screenshots of the designed parts) and check how accurately the details
will differ on the mixed data set.
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Fig. 1. Turbo pump of the RE-120 | Fig. 2. Explosion-assembly diagram | Fig. 3. Examples of photographs
on the laboratory bench of the turbo pump used in training models

Since there was no documentation for this unit, all three-dimensional models of parts were made using reverse
engineering technology (scanned with a METRIS MC30M7 scanner, 2008), and the resulting point cloud was
processed in Geometrix Design X software. During processing, the appearance of the models was simplified. Fig-
ure 4 shows the result of such processing.

Experiment
Data sets
Eventually, six data sets were generated.

1) Data set 1: screenshots of the nuts (nut_12) and screw (shneck_11).
2) Data set 2: images and screenshots nuts (nut_12) and screw (shneck_11).
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3) Data set 3: screenshots of two similar parts — nuts (nut_12) and nuts small (nut_15).

4) Data set 4: photos and screenshots of two similar parts — nuts (nut_12) and nuts small (nut_15).

5) Data set 5: screenshots of four parts — screw (shneck_11), turbine rotor (turbRotor_16), large nut (nut_12),
reflector (reflect_14).

6) Data set 6: photographs and screenshots of four parts — screw (shneck _11), turbine rotor (turbRotor_16),
large nut (nut_12), reflector (reflect_14).

The usable model

The changed Alexnet network — convolutional neural Network (CNN, Convolutional Neural Network) was
used as a model for training in this work [7]. AlexNet has had a major impact on machine learning, especially in
the application of deep learning to machine vision. (As of 2020, the paper on AlexNet has been cited over 24,000
times.)

AlexNet contains eight layers: the first five are convolutional, and the next three are fully connected layers.
As an activation function, ReLU was used, which showed an improvement in training performance compared to
tanh and sigmoid [8].

To speed up network learning, we used an approach based on adding normalizing layers at the learning stage
[9].

Also in the network architecture, the size of the sub-sample core (max-pool) was reduced from 3x3 to 2x2,
since this size is more often used and speeds up network training [10].

Using the architecture of the Alexnet network is because of its study and relatively small depth (a few hidden
layers), which facilitates the learning process of the classifier and allows you to ensure a low computational com-
plexity of the feature extraction process relative to other network architectures.

Image augmentation

To improve the classification accuracy [11] and reduce the over-training effect, the original data set (Fig. 3)
was increased by 10 times by various transformations (Fig. 5). It preserved data balancing — it aligned the number
of images of different types of parts. Augmentation was performed by changing the orientation, brightness, contrast
of the image, its chroma, and using affine transformations [12].
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Fig. 4. Simplified geometry of the parts Fig. 5. Examples of augmented images
that were used to make screenshots for training
the recognition model

The experiment progress

During the experiment, the model was trained first on two different parts, then on two fairly similar ones, then
on a larger number of parts (four). At the same time, in each case, the training was carried out first
exclusively on screenshots, and then using photos. Each time, the model was trained anew on the corresponding
details (Tabl. 2-5).

Figure 6 shows an example of recognizing data sets 1 and 2.

Comparison of results (data sets 1 and 2)

When using actual photos in training, the recognition result is worse on average-it fell by 9 % (Fig. 7).
Tables 6-9 and Figure 8 show examples of recognition (data sets 3 and 4).
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Table 2 Table 3
Data set 1 Results for data set 1
train nut_12: 3000 Detail Photos, Screenshots,
shnek 11:3000 % of recognition | % of recognition
valid nut_12: 350 nut_12 84 66
shnek 11: 350 shnek 11 90 72
test nut_12: 50 (photos), 50 (screenshots) The average % 87 69
shnek_11: 50 (photos), 50 (screenshots) || of recognition
Table 4 Table 5
Data set 2 Results for data set 2
train  |nut_12: 3000 Detail Photos, Screenshots,
shnek_11: 3000 % of recognition | % of recognition
valid |nut_12: 350 nut_12 84 40
shnek_11: 350 shnek_11 72 36
test nut_12: 50 (photos), 50 (screenshots) The average % of 78 38
shnek_11: 50 (photos), 50 (screenshots) recognition
nut_12 shnek_11 100 90 87
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Fig. 6. Example photos in data sets 1 and 2

Fig. 7. Comparison of recognition results
for data sets 1 and 2

Table 6 Table 7
Data set 3 Results for data set 3
train  |nut_12: 3000 Detail Photos, Screenshots,
nut_15: 3000 % of recognition | % of recognition
valid |nut_12: 350 nut 12 96 80
nut_15: 350 nut 15 74 84
test nut_12: 50 (photos), 50 (screenshots) The average % 85 82
nut_15: 50 (photos), 50 (screenshots) of recognition
Table 8 Table 9
Data set 4 Results for data set 4
train | nut_12: 1000 (photos), 500 (screenshots) Detail Photos, Screenshots,
nut_15: 1000 (photos), 500 (screenshots) % of recognition | % of recognition
valid | nut_12: 200 (photos), 50 (screenshots) nut_12 70 74
nut_15: 200 (photos), 50 (screenshots) nut_15 60 70
test | nut_12: 50 (photos), 50 (screenshots) The average % 65 79
nut_15: 50 (photos), 50 (screenshots) of recognition
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Comparison of results (data sets 3 and 4)

When using actual photos in training, the recognition result is on average worse — it fell by 20 % (Fig. 9).
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Fig. 8. Example photos for data sets 3 and 4 Fig. 9. Comparison of recognition results in
data sets 3 and 4

Tables 10-13 and figure 10 provide examples of recognition (data sets 5 and 6).

Table 10 Table 11
Data set 5 Results for data set 5
train|nut_12: 3000 | Photos, Screenshots,
shnek_11: 3000 Detal % of recognition |% of recognition
reflect_14: 3000
turbRotor_16: 3000 nut_12 76 80
valid |nut_12: 350
shnek 11: 350 shnek 11 76 84
reflect_14: 350 reflect_14 64 94
turbRotor_16: 350
test nut_12: 50 (photos), 50 (screenshots) turbRotor_16 |70 90
shnek_11: 50 (photos), 50 (screenshots)
reflect_14: 50 (photos), 50 (screenshots) The average % 71,5 87
turbRotor_16: 50 (photos), 50 (screenshots)|  |°f recognition
Table 12 Table 13
Data set 6 Results for data set 6

train  |nut_12: 1000 (photos), 500 (screenshots)
shnek_11: 1000 (photos), 500 (screenshots) Detail
reflect_14: 1000 (photos), 500 (screenshots)
turbRotor_16: 1000 (photos), 500 (screen-

Photos, Screenshots,
% of recognition |% of recognition

nut_12 70 64
shots)
valid |nut_12: 200 (photos), 50 (screenshots)
shnek_11: 200 (photos), 50 (screenshots) shnek_11 68 6
reflect_14: 200 (photos), 50 (screenshots)
turbRotor_16: 200 (photos), 50 (screen- reflect_14 64 70
shots) turbRotor 16 |64 82

test nut_12: 50 (photos), 50 (screenshots)
shnek 11: 50 (photos), 50 (screenshots)
reflect_14: 50 (photos), 50 (screenshots)
turbRotor_16: 50 (photos), 50 (screenshots)

The average %

o3 66.5 73
of recognition

Performance evaluation of the proposed approach

Let's check the effect of similarity of details on the probability of correct recognition. A comparison of the
results (data sets 2 and 4) showed that when using sufficiently similar parts (of the same type) for training, the
average recognition level is 2 % lower (Fig. 11).
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reflect_14 turbRotor_16

shnek_11

Fig. 10. Examples of recognizing data sets 5 and 6

Let's take the data of photo recognition in each experiment: in all cases, the average percentage of recognition
using photos was lower (Fig. 12, 13).
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Fig. 11. Average recognition score of models 2 and 4 Fig. 12. Comparison of recognition results
in data sets 5 and 6

Based on the data got, we can also note it that even an inferior quality of the CAD model can provide
a recognition probability of over 70 %. This is a fairly significant result (Fig. 14). However, an increase in the
number of recognized objects in the model leads to a decrease in the numerical value of the recognition probability
(Fig. 15). The reasons may be an insufficient number of photos/screenshots for training the model, insufficient
quality of CAD models, settings of training parameters.
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Fig. 13. Comparison of the effect of using photos of actual Fig. 14. Recognition of the big nut in data sets 1
details on the probability of correct recognition and 2,3and 4

The results got require careful verification with many images for training and with improved CAD models.

Another unusual result is differences in the recognition of a model with a pair of different parts (data set 1) and
with the same data set (data set 3) (Fig. 14)

The example of part nut_12 shows that the part was recognized worse in the data set with shneck 11 than in
the data set with nut_12 (Fig. 15). thus, it can be concluded that not always differences in geometry can guarantee
a high-quality definition of the detail in the image. We need additional experiments to determine the cause of this
behavior.

We should note it that the recognition of parts was carried out only individually, not as part of a group or
assembly.

Model effectiveness evaluation

The highest recognition rate is 96 % (3, training on screenshots, similar details), the lowest is 36 %
(2, training using photos). the overall average recognition rate for models trained in screenshots is 73.875 %.

6
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The highest recognition rate (96 %) shows the model’s
effectiveness. A large difference between the largest
indicator and the average total (22.125 %) may indicate
that the data is not preprocessed well enough, rather than
that the model is ineffective.

100
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46 70 72
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nut 12 shnek 11 Despite the inferior quality of models from the CAD
program, the average recognition rates in the photo (over
70 %), and the small amount of data in the set, the results
of the experiments can be called successful. We confirmed

Conclusion

1 m2 m5 m6

Fig. 15. Comparison of the that it is possible to recognize real details in photos,
probability of recognition focusing only on the images of the CAD-editor workspace.
of individual parts in all data sets This result gives grounds to argue that with competent

training of models, creating a computer vision algorithm,
and high-quality three-dimensional details, you can create a program that could learn only from screenshots and
show a high-precision result of determining the object in the photo.
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HeiipocereBble Moe/IM PACIIO3HABAHMS 3JIEMEHTOB CJIOKHBIX KOHCTPYKI UM
B CHCTEMAaX KOMIbLIOTEPHOI'0 3peHUsl

M.B. Cémuna ', cmyoenm, mvsyomina@gmail.com
E.C. Azewun 2, accucmenm npenooaéamens, ageshin.e@mail.ru

! Mockosckuii asuayuonnviii uncmumym (HayuoHATbHbIIL UCCIe006ameNbCeKull YHugepcumen,), kageopa npu-
K1aonou ungopmamuxu, 2. Mockea, 125993, Poccus

2 Mockoeckuii asuayuonnblil uHCmumym (HayuoHAIbHbIIL UCCIe006amenbCeKull yHueepcumen), kagheopa mexmo-
Jlo2uY npou3goo0Ccmea ogueameel iemamenbHulx annapamos, e. Mockea, 125993, Poccusa

B nanHOI! cTaThe MpeAcTaBICH HKCIIEPUMEHT B 00JIaCTH KOMIIBIOTEPHOTO 3pSHNS, HAalPaBJICHHBIN HAa aBTOMa-
THU3UPOBaHKUE 00yIECHUsI HEHPOCETH paclio3HaBaTh IIPOMBIIUICHHBIE 00BEKTH Ha IPUMEpE JeTaneil TypOoHacoc-
HOTO arperara paketHoro nsuratens P/I-120. {ns oOy4eHns: HEHPOHHOM CeTH UCIIONB30BAINCH KaK Ha0op JaH-
HBIX, COCTOSIINH U3 hoTorpaduii yke CyIecTBYIONINX AeTalel, Tak 1 Habop m3o0paxenuii u3 CAD-niporpaMMel,
UMHTHPYIOIINI COO0H CTaiI0 MPOSKTUPOBAHUS TPEOYEMOT0 U3IEIHSI.

[Tpu cpaBHEeHHHU pe3yJbTATOB 3KCIIEPUMEHTa MOATBEPMIIACH THUIIOTE3a O TOM, YTO BO3MOXKHO OOYYHThH CH-
CTEMBI KOMIIBIOTEPHOTO 3pEHHs Pa3InyaTh elle He CYIECTBYIOLIHE 00bEKTh Ha OCHOBE CKPHHIIIOTOB UX IH(po-
BbIX 1BOHHHKOB (CAD-Monenu). Cobupass HEOOXOAMMBIE JaHHBIE 10 HEMOCPEICTBEHHOTO MPOU3BOICTBA IPO-
JYKTa, MOXHO JOOMTbCS XOPOLIMX MOKa3aTelsied pacro3HaBaHUs JaKe PeajbHOr0 O0BEKTa C IMPOCTOH reoMer-
pueil.

B crartbe npencTaBieHbl pe3yabTaThl IPUMEHEHHUS TAKOTO METO/a B CPABHEHMH C TPAAUIOHHBIM MOAX0A0M
00y4eHUs, a TaKKe pacCMOTPEHBI IEPCIICKTHBEI NCTIONB30BAHNS JAHHOW TEXHOJIOTHH B IPOMBIIUICHHOCTH.

Knrouegvie cnosa: komnviomeproe 3perue, COOpOUHbIL NPOYECC, cCucmema KOHmpOos, npouseoocmeo, Python,
asuayuUoHHas npomviuiienHocms, Keras, aspokocmuieckan npomuluiieHHOCHb, NPOMblULIEHHble pOOOMbL, pac-
nosHasanue 06vEeKMmos.

bnazooapnocmu. ABTOPBHI BBIpaXaroT 0JIAr0JIapHOCTh PYKOBOJUTENIO paboThl aotieHTYy A.B. MonHoBy 3a
MpeIoCTaBIeHHOEe 000PYI0BaHUE U TIOMOIIIb B paboTe.
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