
Software Journal: Theory and Applications 3, 2020

 1

UDC 004.021

DOI: 10.15827/2311-6749.20.3.1

The design of the algorithm reduction of a binary cooperative

assignment problem to a travelling salesman problem

A.M. Sheveleva 1, student, shevelevaam_work@mail.ru

G.V. Razumovsky 1, Ph.D. (Engineering), Associate Professor, razumovsky@nicetu.spb.ru

1 St. Petersburg Electrotechnical University "LETI", St. Petersburg, 197376, Russian Federation

The paper considers the pressing problem of reducing some NP-complete problems to others. The primary

focus in this paper is the design of the algorithm reduction of a binary cooperative assignment problem to

a travelling salesman problem to find its solution and transfer the solving performance of one NP-complete prob-

lem to another; there are brief mathematical formulations of the problems.

The paper describes the problems associated with reducing some NP-complete problems to others. As a sam-

ple, we consider an example of reducing the traveling salesman problem to the problem of the Hamiltonian cy-

cle. The authors propose a new algorithm for reducing a binary cooperative assignment problem to a travelling

salesman problem, which solves the current reduction problems that impose constraints on the NP-complete

problems themselves.

The authors investigate the developed algorithm for reducing the accuracy of obtaining the result of the

original NP-complete problem and the computational complexity.

The paper mathematically proves that the reduction algorithm does not reduce the accuracy of obtaining a so-

lution to the binary cooperative assignment problem when the salesman problem is accurately solved. There are

no restrictions on the problems themselves. The paper contains a mathematical argument for the polynomial

computational complexity of the developed reduction algorithm.

For software demonstration of the correct operation, the developed reduction algorithm was implemented

in the Java programming language, as well as exact algorithms for solving the binary cooperative assignment

problem and the traveling salesman problem.

In this program, experiments were performed to find solutions to the original NP-complete problem with dif-

ferent amounts of input data, and the correctness of the reduction algorithm was confirmed.

The paper describes future trends for the analysis of this area.

Keywords: traveling salesman problem, NP-completeness, binary cooperative assignment problem,

reduction algorithm, reduction accuracy, computational complexity.

There are thousands of NP-complete tasks in various fields, such as cartography, x-ray crystallography, cryp-

tography, and training of intelligent agents [1].

This class contains a significant portion of fundamental problems whose complexity cannot be resolved since

it is known that the NP-complete problem cannot yet be solved in polynomial time.

Currently, the evidence that the problem being solved is NP-complete is the reason for stopping the search

for an effective algorithm for this problem [2].

S. Cook laid the Foundation for the theory of NP-complete problems in 1971. [3] proves that any

NP-complete problem can be reduced to any other NP-complete problem in polynomial time, thus proving

the NP-completeness of many known combinatorial problems [4].

The implication is that by solving one problem, you can get solutions to other NP-complete problems using

reduction algorithms.

As a result, the solution is simplified since for some problems heuristic algorithms are found that obtain a so-

lution close to optimal. However, it is not the case. In most cases, existing reduction algorithms only prove

NP-completeness but do not help to find solutions through other problems [5]. Creating exactly such reduction

algorithms for NP-complete problems is an urgent problem.

The goal of this paper is the design of the algorithm reduction of a binary cooperative assignment problem

(2-AP) to a travelling salesman problem (TSP) for solving determination.

Reducing NP-Complete Problems

To prove the NP-completeness of a certain problem A, it is sufficient to show that a certain known

NP-complete problem B can be reduced to A. For information, there are three general methods: restriction

of a problem, local replacement, and component construction [6].

Software Journal: Theory and Applications 3, 2020

 2

The simplest and most frequently used method for proving NP-completeness is the restriction of a problem.

The idea is to find out the additional restrictions that need to be imposed on problem B so that the resulting prob-

lem is equivalent to A. In other words, we need to show that A includes a special case of problem B.

A striking example of this method is the reduction of the traveling salesman problem to the problem of the

Hamiltonian cycle and back.

The traveling salesman problem [7; 8] is to find the shortest Hamiltonian cycle in a weighted oriented graph.

The problem of a Hamiltonian loop is finding a loop that visits every node of the graph.

From a mathematical point of view, the salesman's problem can be described as follows.

There are n cities. Each city is characterized by the following values:

xij – the i city path out an existence to the j city:

xij=1, if the path exists and xij=0 if otherwise;

cij − the path cost from i city i to j city, cij≥0.

The traveling salesman problem is to find the minimum path that passes through these cities at least once

and then return to the base city.

The TSP problem’s representation as a graph has the following form.

The directed graph G = (V, E) is TSP instance, if |V|=n, and eij=cij, if xij = 1, i, j ∈ V. The problem is to find

the minimum weight Hamiltonian cycle.

The reduction of the Hamiltonian cycle problem to the traveling salesman problem is obvious [5] since

the Hamiltonian cycle problem is a special case of the traveling salesman problem.

The P-code:

numberVertices = getNumberVertices (Hamilton Graph)

tspGraph = createCompleteGraph(numberVertices)

foreach edge in tspGraph do

if containsEdge (edge, hamiltonGraph)

then setEdgeWeight (edge, 1)

else setEdgeWeight (edge, numberVertices + 1)

end if

end foreach

return (G, numberVertices)

As you can see from the P-code, all infinite paths are replaced with weight paths. It follows that if the origi-

nal Hamiltonian cycle did not exist, this algorithm will still give a positive answer since the minimum path will

be found. Introducing an extra condition that the shortest path should not exceed the number of vertexes corrects

this error, but in more complex cases, this error can’t be eliminated.

It should be noted that not all graph problems are NP-complex, depending on the conditions; they can

be solved in polynomial time [9].

In the reverse reduction, when all weights are replaced by 1, it is obvious that the minimum path will not be

found, since there can be many Hamiltonian cycles. And this error can’t be eliminated.

The main problem of the restriction method is that the problem arising as a result of the restriction does not

have to be an exact copy of the known NP-complete problem, only a one-to-one correspondence between

the problems is necessary, preserving the answers "yes" and "no".

The local replacement method consists in choosing some characteristic property of a known NP-complete

problem, using it to form a family of basic modules, and obtaining the corresponding individual problems

of a given problem by uniformly replacing each basic module with some other structure.

When replacing, some boundary cases of the given problem are often omitted, so this method is not suitable

for the exact solution of the given problem through reductions.

And the third method is building components. The main idea of such reductions is to construct certain com-

ponents with the help of the constituent parts of the problem under consideration, connecting which one can real-

ize the individual problems of the known NP-complete problem.

Such method is used in [10] to reduse a vertex cover problem to the problem of finding a Hamiltonian cycle.

The vertex coverage problem is to find vertex coverage in the graph with the number of K vertices. In this reduc-

tion, for each graph edge, a certain kind of constituents are created that are connected to other constituents and

vertices that are responsible for the number of vertices in the vertex coverage. The resulting graph is searched for

a Hamiltonian cycle. If the Hamiltonian cycle is found, then the vertex cover exists, and the exact solution

is found. But the point is that not always in the absence of a Hamiltonian cycle, there is no vertex cover.

When constructing the constituents, as under a substitution, some situations of the original problem are not

considered, so this method is also not suitable for a reduction.

All three methods are not suitable for getting a solution to the original problem via reduction algorithms,

since their goal is to prove NP-completeness, and not to solve one problem through another.

Reduce the 2-AP (NP-completeness of which is proved [11]) to the TSP so that the accuracy of the solution

of the original problem is preserved.

Software Journal: Theory and Applications 3, 2020

 3

2-AP definition

The definition of this problem is as follows [11].

There is an upper-level customer who can offer n types of work. m performers who are the lower level per-

form these problems. The following values characterize the customer:

xi − value of the customer's choice: xi = 1 when ordering work of type i, and xi = 0 if otherwise;

cij − the customer's costs for performing type i of work by j performer (i ∈ I, j ∈ J, |I| = n, |J| = m).

Vector x has length n and consists of zeros and ones − the customer can order any set of works or refuse

to perform all the works. Пусть I(x)={i ∈ I, xi = 1} − be the set of ordered works in the variant of choice х.

But it is more profitable for the customer to order a maximum of works that can be performed simultaneously:

|I(x)| = m.

The following parameters characterize performers:

yij – parameter for selecting performers: уij = 1 when j performer performs the work of i type, and уij=0 if oth-

erwise;

dij – j performer's income

from doing i work (i ∈ I, j ∈ J).

Each performer can choose only one type of work I (x) offered by the customer, and only one performer can

perform one type of work.

The lower level problem is to assign work in such a way as to maximize the total income of the performers.

The upper-level problem is to minimize the customer's costs, taking into account the decision of the contractors

on the choice of work.

Consider setting 2-AP.

Let I = {1, ..., n}, J = {1, ..., m}, x = (x1, ..., xn), y = (yij)i ∈ I, j ∈ J.

Let there be two real matrices С = (cij)i ∈ I, j ∈ J и D = (dij)i ∈ I, j ∈ J. We consider that n ≥ m.

()

min min ij ij
x X y Y x

i I j J

c y
 

 

 (1)

where X = {x|xi ∈ {0, 1} (i ∈ I), sumi∈I(xi) = m}, a Y*(x) − set of optimal solutions to the problem

()
minij ij
y Y x

i I j J

d y


 

→ (2)

Here Y = {y|yij ∈ {0, 1}, sum i∈I(yij) = 1, sum j ∈ J(yij) = xi (i ∈ I, j ∈ J)}

Problem (1) is an upper – level problem, and (2) is a lower-level problem. The lower level is a classic

assignment problem. The upper level counts on the best choice of the lower level.

Reduction algorithm

We present a cooperative two-level assignment problem to the traveling salesman problem. For this, we

introduce the following notation:

n (xi = 1) − works ordered by performers, the number of which is equal to m − number of performers.

V − instance graph vertices TSP G = (V, E), the number of which is m+n (xi = 1).

Е − instance graph edges TSP G = (V, E), in the initial notation is the empty set.

The algorithm implementing the reduction of the cooperative 2-AP to the TSP consists of a sequence of the

following steps.

Step 1. Construct the graph G = (V, E).

Step 2. Add edges to the set E going from vertices m to each vertex n (xi = 1), with weight dij – 0.1 / cij.

Step 3. Construct edges from vertices n (xi = 1) to each vertex m with weight 0.

Steps 2 and 3 are performed until we have traversed all vertices m and n (xi = 1).

Here is the P-code.

PurposeTSPGraph = createVertices (n (xi = 1) + m)

foreach Vertices_m in PurposeTSPGraph do

foreach Vertices_n in PurposeTSPGraph do

addEdgeWeight (edge, сnm-1/(10*dnm))

end foreach

end foreach

foreach Vertices_n in PurposeTSPGraph do

foreach Vertices_m in PurposeTSPGraph do

addEdgeWeight (edge, 0)

end foreach

end foreach

return (G, numberVertices)

Let us investigate the reduction algorithm to preserve the accuracy of the solution and determine its comp-

lexity.

Software Journal: Theory and Applications 3, 2020

 4

Statement 1. If c, d ∈ N, then the reduction algorithm preserves the accuracy of solving the bilevel problem.

Evidence.

1) The algorithm creates paths in the graph only between customers and performers. The traveling salesman

problem is to walk through all the vertices of the graph exactly once, therefore, each performer will receive

exactly one problem.

2) The traveling salesman problem finds the minimum path:

1
min

10
ij

i I j J ij

d
c 

 
− → 

 
 

 (3)

()
1 1

10 10
ij ij

i I j J i I j J i I j Jij ij

d d
c c     

   
− → −   

   
   

   (4)

To get the minimum value in (3), the first sum in (4) must be minimum and the second maximum.

For the second amount to be maximum, the divisor must be minimum. From this, it follows that what is sought

minij

i I j J

d
 

→ (5)

minij

i I j J

c
 

→ (6)

From point 1 it follows that formulas (5), (6) can be reduced to the form

()
minij ij
y Y x

i I j J

d y


 

→ (7)

()
min min ij ij
x X y Y x

i I j J

c y
 

 

 (8)

3) Since c, d ∈ N, then dij >> 0.1 / cij. It follows from this that the first sum in (4) will be more significant

in the final value than the second sum. This satisfies the condition of the cooperative 2-AP that the upper level

counts on the best choice of the lower level. It follows from this that formulas (7) and (8) are transformed into

formulas (1) and (2).

This completes the proof. Statement 2. The complexity of the reduction algorithm is quadratic.

Evidence.

The algorithm uses a double loop over m and n = 1 twice. It follows from this that [12]:

О(n*m) + O(m*n) = 2O(n*m) = O(n*m).

From the condition that n = m it follows that

O(n*m) = O(m2).

This completes the proof.

Software implementation.

In the Java programming language, a program was developed that implements the exact solutions of 2-AP

and TSP, as well as an algorithm for reducing one problem to another (github.com/ShevelevaAnna/

NP_Complate), the program was tested in accordance with [13].

The exact solution to the traveling salesman problem implements the package of classes package npCom-

plateTSP. class ExactSolutionTSP – the class in this package that is responsible for finding the shortest path.

In this class, first the upper bound of the solution is found by the greedy algorithm, then the optimal solution

is found by the method of branches and bounds.

The package npComplateCAP class package is responsible for initializing the 2-AP problem, its exact solu-

tion, and bringing it to the traveling salesman problem. The class CAP is responsible for generating test prob-

lems randomly. Class Reduction2CAPToTSP is responsible for reducing 2-AP to TSP. The class ExactSolu-

tion2CAP package finds a set of data with the maximum profit for performers and the minimum loss for the cus-

tomer by searching through all solutions.

An example of the operation of this program is shown in the figure. 1

This figure shows that the result of the reduction algorithm is correct. The exact solution of 2-AP turned out

to be 0-> 0, 2-> 1, 1-> 2. The exact solution of the TSP is 0-> 3, 2-> 4, 1-> 5 or, after transformation, 0-> 0,

2-> 1, 1-> 2.

The program was tested for correctness for matrices of dimension n=3 ... n=10 with natural values generated

randomly. 100 different tests were created for each n. All tests showed that the 2-AP solutions directly and via

the TSP coincide, which means that the reduction algorithm doesn’t affect the accuracy of the problem solution.

The table shows examples of test results.

Software Journal: Theory and Applications 3, 2020

 5

Fig. 1. An example of the program for n = 3

Examples of test results

 № n 2-AP result TSP result

 1 3 021 0 3 2 4 1 5

 2 4 2301 0 6 1 7 2 4 3 5

 3 5 04231 0 5 1 9 2 7 3 8 4 6

 4 6 025413 0 6 1 8 3 1 0 4 7 2 11 3 9

 5 7 6051234 0 13 1 7 2 12 3 8 4 9 5 10 6 11

 6 8 07364521 0 8 1 15 3 14 4 12 5 13 7 9 6 10 2 11

 7 9 358046172 0 12 1 14 2 17 4 13 5 15 6 10 8 11 3 9 7 16

 8 10 1574923086 0 11 1 15 2 17 3 14 4 19 5 12 7 10 8 18 6 13 9 16

Solution capability for an NP-complete problem in polynomial time

Currently, proving the possibility of solving NP-complete problems in polynomial time or refuting it is one

of the seven problems of the millennium. For its solution, the Clay Mathematical Institute awarded a prize of one

million US dollars [14].

If a polynomial solution is found for at least one NP-complete problem, then it will automatically be assumed

that there is also a polynomial solution for other NP-complete problems. In particular, the encryption algorithms

used in asymmetric key cryptography will immediately become defenseless against hacking.

Conclusion

The paper analyzes the existing methods for reducing some NP-complete problems to others. All methods

were aimed at proving NP-completeness, and not at getting a solution to one NP-complete problem through an-

other. It followed from this that the existing reduction algorithms do not simplify the computation of

NP-complete problems. It was decided to create an algorithm for bringing 2- AP to the TSP to find a solution

to the original problem.

The developed reduction algorithm has mathematical studies on the accuracy of getting the solution of the

original NP-complete problem and on the computational complexity. The study outcome showed that this algo-

rithm does not affect the accuracy of the 2- AP solution and that the algorithm has quadratic complexity.

The reduction algorithm was also implemented programmatically and tested for correctness. The test results

confirmed the mathematical study.

In the future, it is planned to extend the described approach to other NP-complete problems and create

a single program for bringing some NP-complete problems to others.

References

1. Korobov D.A., Belyaev S.A. Modern Approaches to Training Intelligent Agents in the Atari Environ-

ment. Software & Systems, 2018, vol. 31, no. 2, pp. 284–290. DOI: 10.15827/0236-235X.122.284-29 (in Russ.).

2. Kleinberg J., Tardos E. Algorithm Design. UK, Pearson Publ., 2005, 864 p. (Rus ed.: St. Petersburg,

2016, 800 p.).

3. Cook S.A. The complexity of theorem-proving procedures. Proc. 3rd Ann. ACM STOC, Ohio, 1971,

рр. 151–158 (Rus ed.: Moscow, 1975, рр. 5–15).

4. Ruiz-Vanoye J.A., Pérez-Ortega J., Pazos R.A., Díaz-Parra O., Frausto-Solís J., Fraire Huacuja H.J.,

Cruz-Reyes L. Survey of polynomial transformations between NP-complete problems. J. of Computational and

Applied Mathematics. 2011, vol. 235, iss. 16, pp. 4851–4865.

5. Chen Der-San, Batson R.G., Dang Yu. Applied Integer Programming: Modeling and Solution. USA, NY,

John Wiley and Sons Publ., 2010, 490 p.

6. Vorobovich N.P., Lopateeva O.N. On NP-completeness of university timetable forming problems.

The Bull. of KrasGAU, 2006, no. 11, pp. 385-391 (in Russ.).

Software Journal: Theory and Applications 3, 2020

 6

7. Valkovsky V.B., Belyaev S.А. Using phase transitions in solving combinatorial problems. Software &

Systems, 2000, no. 4, pp. 37–38 (in Russ.).

8. Valkovsky V.B., Belyaev S.А. Intelligent return in phase transition when solving combinatorial problems.

Software & Systems, 2002, no. 4, pp. 16–19 (in Russ.).

9. Razumovsky G.V., Pavlovsky М.G., Belyaev S.А. Сurrent calendar planning in decision support systems.

Proc. of Saint Petersburg Electrotechnical Univ., 2007, no. 2, pp. 57–61 (in Russ.).

10. Garey M.R., David S.J. Computers and Intractability: A Guide to the Theory of NP-Completeness. USA,

SF, W.H. Freeman Publ., 1978, 340 p.

11. Larin R.М., Pyatkin А.V. Two-level assignment task. J. of Applied and Industrial Mathematics, 2001,

no. 2, pp. 42–51 (in Russ.).

12. Krupsky V.N. Introduction to Computational Complexity. Moscow, 2006, 128 p. (in Russ.).

13. Chernaya О.S., Fedorova Yu.Yu., Belyaev S.А. Application of automated testing methods and means

to check the quality of software systems for processing measurement information. Proc. of Saint Petersburg

Electrotechnical Univ., 2013, no. 9, pp. 55–58 (in Russ.).

14. The Millennium Prize Problems. Available at: http://www.claymath.org/millennium-problems/

millennium-prize-problems (accessed June 20, 2020).

УДК 004.021

DOI: 10.15827/2311-6749.20.3.1

Разработка алгоритма приведения двухуровневой кооперативной задачи

о назначениях к задаче коммивояжера

А.М. Шевелева 1, студент, shevelevaam_work@mail.ru

Г.В. Разумовский 1, к.т.н., доцент, razumovsky@nicetu.spb.ru

1 Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»,

С-Петербург, 197376, Россия

Статья посвящена актуальной проблеме приведения одних NP-полных задач к другим. Основное

внимание в работе авторы уделяют разработке алгоритма приведения двухуровневой кооперативной за-

дачи о назначениях к задаче коммивояжера для поиска ее решения и перенесения результатов решения

одной NP-полной задачи в другую, приведены краткие математические формулировки задач.

В статье описываются проблемы, связанные с приведением одних NP-полных задач к другим. Как об-

разец рассматривается пример приведения задачи коммивояжера к задаче гамильтонова цикла, предлага-

ется новый алгоритм приведения двухуровневой кооперативной задачи о назначениях к задаче коммиво-

яжера, в котором решены существующие проблемы приведения, накладывающие ограничения на сами

NP-полные задачи.

Разработанный алгоритм приведения исследуется на точность получения результата исходной

NP-полной задачи и вычислительную сложность. В работе математически доказывается, что алгоритм

приведения не снижает точность получения решения двухуровневой кооперативной задачи о назначени-

ях при точном решении задачи коммивояжера. На сами задачи не накладывается никаких ограничитель-

ных условий. Также приведено математическое доказательство полиномиальной вычислительной слож-

ности разработанного алгоритма приведения.

Для программной демонстрации корректности работы разработанный алгоритм приведения был реа-

лизован на языке программирования Java, а также реализованы точные алгоритмы решения двухуровне-

вой кооперативной задачи о назначении и задачи коммивояжера. На данной программе были проведены

эксперименты с нахождением решений исходной NP-полной задачи с различным количеством входных

данных и подтверждена корректность работы алгоритма приведения.

В работе описаны дальнейшие перспективы по исследованию данного направления.

Ключевые слова: Задача коммивояжера, NP-полнота, двухуровневая задача о назначениях, алгоритм

приведения, точность приведения, вычислительная сложность.

Литература

1. Коробов Д.А., Беляев С.А. Современные подходы к обучению интеллектуальных агентов в среде

Atari // Программные продукты и системы. 2018. Т. 31. № 2. С. 284–290. DOI: 10.15827/0236-

235X.122.284-29.

Software Journal: Theory and Applications 3, 2020

 7

2. Клейнберг Дж., Тардос Е. Алгоритмы: разработка и применение. СПб.: Питер, 2016. 800 с.

3. Кук С.А. Сложность процедур доказательства теорем. М.: Мир, 1975. С. 5–15.

4. Ruiz-Vanoye J.A., Pérez-Ortega J., Pazos R.A., Díaz-Parra O., Frausto-Solís J., Fraire Huacuja H.J.,

Cruz-Reyes L. Survey of polynomial transformations between NP-complete problems. J. of Computational and

Applied Mathematics. 2011, vol. 235, iss. 16, pp. 4851–4865.

5. Chen Der-San, Batson R.G., Dang Yu. Applied Integer Programming: Modeling and Solution. John

Wiley and Sons Publ., 2010, 490 p.

6. Воробович Н.П., Лопатеева О.Н. О NP-полноте задач формирования расписания в вузе // Вестн.

КрасГАУ. 2006. № 11. С. 385-391.

7. Вальковский В.Б., Беляев С.А. Использование фазовых переходов при решении комбинаторных

задач // Программные продукты и системы. 2000. № 4. С. 37–38.

8. Вальковский В.Б., Беляев С.А. Интеллектуальный возврат в условиях фазового перехода при ре-

шении комбинаторных задач // Программные продукты и системы. 2002. № 4. С. 16–19.

9. Разумовский Г.В., Павловский М.Г., Беляев С.А. Оперативно-календарное планирование в систе-

мах поддержки принятия решений // Изв. СПбГЭТУ «ЛЭТИ». 2007. № 2. С. 57–61.

10. Garey M.R., David S.J. Computers and Intractability: A Guide to the Theory of NP-Completeness. USA,

SF, W.H. Freeman Publ., 1978, 340 p.

11. Ларин Р.М., Пяткин А.В. Двухуровневая задача о назначениях // Дискретный анализ и исследова-

ние операций. 2001. № 2. С. 42–51.

12. Крупский В.Н. Введение в сложность вычислений. М.: Факториал Пресс, 2006. 128 с.

13. Черная О.С. Федорова Ю.Ю., Беляев С.А. Применение методов и средств автоматизированного

тестирования для проверки качества программных комплексов обработки измерительной информации //

Изв. СПбГЭТУ «ЛЭТИ». 2013. № 9. С. 55–58.

14. The Millennium Prize Problems. URL: http://www.claymath.org/millennium-problems/millennium-prize-

problems (дата обращения: 20.06.2020).

