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The paper considers the pressing problem of reducing some NP-complete problems to others. The primary
focus in this paper is the design of the algorithm reduction of a binary cooperative assignment problem to
a travelling salesman problem to find its solution and transfer the solving performance of one NP-complete prob-
lem to another; there are brief mathematical formulations of the problems.

The paper describes the problems associated with reducing some NP-complete problems to others. As a sam-
ple, we consider an example of reducing the traveling salesman problem to the problem of the Hamiltonian cy-
cle. The authors propose a new algorithm for reducing a binary cooperative assignment problem to a travelling
salesman problem, which solves the current reduction problems that impose constraints on the NP-complete
problems themselves.

The authors investigate the developed algorithm for reducing the accuracy of obtaining the result of the
original NP-complete problem and the computational complexity.

The paper mathematically proves that the reduction algorithm does not reduce the accuracy of obtaining a so-
lution to the binary cooperative assignment problem when the salesman problem is accurately solved. There are
no restrictions on the problems themselves. The paper contains a mathematical argument for the polynomial
computational complexity of the developed reduction algorithm.

For software demonstration of the correct operation, the developed reduction algorithm was implemented
in the Java programming language, as well as exact algorithms for solving the binary cooperative assignment
problem and the traveling salesman problem.

In this program, experiments were performed to find solutions to the original NP-complete problem with dif-
ferent amounts of input data, and the correctness of the reduction algorithm was confirmed.

The paper describes future trends for the analysis of this area.

Keywords: traveling salesman problem, NP-completeness, binary cooperative assignment problem,
reduction algorithm, reduction accuracy, computational complexity.

There are thousands of NP-complete tasks in various fields, such as cartography, x-ray crystallography, cryp-
tography, and training of intelligent agents [1].

This class contains a significant portion of fundamental problems whose complexity cannot be resolved since
it is known that the NP-complete problem cannot yet be solved in polynomial time.

Currently, the evidence that the problem being solved is NP-complete is the reason for stopping the search
for an effective algorithm for this problem [2].

S. Cook laid the Foundation for the theory of NP-complete problems in 1971. [3] proves that any
NP-complete problem can be reduced to any other NP-complete problem in polynomial time, thus proving
the NP-completeness of many known combinatorial problems [4].

The implication is that by solving one problem, you can get solutions to other NP-complete problems using
reduction algorithms.

As a result, the solution is simplified since for some problems heuristic algorithms are found that obtain a so-
lution close to optimal. However, it is not the case. In most cases, existing reduction algorithms only prove
NP-completeness but do not help to find solutions through other problems [5]. Creating exactly such reduction
algorithms for NP-complete problems is an urgent problem.

The goal of this paper is the design of the algorithm reduction of a binary cooperative assignment problem
(2-AP) to a travelling salesman problem (TSP) for solving determination.

Reducing NP-Complete Problems

To prove the NP-completeness of a certain problem A, it is sufficient to show that a certain known
NP-complete problem B can be reduced to A. For information, there are three general methods: restriction
of a problem, local replacement, and component construction [6].
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The simplest and most frequently used method for proving NP-completeness is the restriction of a problem.
The idea is to find out the additional restrictions that need to be imposed on problem B so that the resulting prob-
lem is equivalent to A. In other words, we need to show that A includes a special case of problem B.

A striking example of this method is the reduction of the traveling salesman problem to the problem of the
Hamiltonian cycle and back.

The traveling salesman problem [7; 8] is to find the shortest Hamiltonian cycle in a weighted oriented graph.
The problem of a Hamiltonian loop is finding a loop that visits every node of the graph.

From a mathematical point of view, the salesman's problem can be described as follows.

There are n cities. Each city is characterized by the following values:

xij — the i city path out an existence to the j city:

xii=1, if the path exists and x;;=0 if otherwise;

cij — the path cost from i city i to j city, ¢;>0.

The traveling salesman problem is to find the minimum path that passes through these cities at least once
and then return to the base city.

The TSP problem’s representation as a graph has the following form.

The directed graph G = (V, E) is TSP instance, if |V|=n, and ej=c;jj, if Xij = 1, i, j € V. The problem is to find
the minimum weight Hamiltonian cycle.

The reduction of the Hamiltonian cycle problem to the traveling salesman problem is obvious [5] since
the Hamiltonian cycle problem is a special case of the traveling salesman problem.

The P-code:

numberVertices = getNumberVertices (Hamilton Graph)
tspGraph = createCompleteGraph (numberVertices)
foreach edge in tspGraph do
if containsEdge (edge, hamiltonGraph)
then setEdgeWeight (edge, 1)
else setEdgeWeight (edge, numberVertices + 1)
end 1if
end foreach
return (G, numberVertices)

As you can see from the P-code, all infinite paths are replaced with weight paths. It follows that if the origi-
nal Hamiltonian cycle did not exist, this algorithm will still give a positive answer since the minimum path will
be found. Introducing an extra condition that the shortest path should not exceed the number of vertexes corrects
this error, but in more complex cases, this error can’t be eliminated.

It should be noted that not all graph problems are NP-complex, depending on the conditions; they can
be solved in polynomial time [9].

In the reverse reduction, when all weights are replaced by 1, it is obvious that the minimum path will not be
found, since there can be many Hamiltonian cycles. And this error can’t be eliminated.

The main problem of the restriction method is that the problem arising as a result of the restriction does not
have to be an exact copy of the known NP-complete problem, only a one-to-one correspondence between
the problems is necessary, preserving the answers "yes" and "no".

The local replacement method consists in choosing some characteristic property of a known NP-complete
problem, using it to form a family of basic modules, and obtaining the corresponding individual problems
of a given problem by uniformly replacing each basic module with some other structure.

When replacing, some boundary cases of the given problem are often omitted, so this method is not suitable
for the exact solution of the given problem through reductions.

And the third method is building components. The main idea of such reductions is to construct certain com-
ponents with the help of the constituent parts of the problem under consideration, connecting which one can real-
ize the individual problems of the known NP-complete problem.

Such method is used in [10] to reduse a vertex cover problem to the problem of finding a Hamiltonian cycle.
The vertex coverage problem is to find vertex coverage in the graph with the number of K vertices. In this reduc-
tion, for each graph edge, a certain kind of constituents are created that are connected to other constituents and
vertices that are responsible for the number of vertices in the vertex coverage. The resulting graph is searched for
a Hamiltonian cycle. If the Hamiltonian cycle is found, then the vertex cover exists, and the exact solution
is found. But the point is that not always in the absence of a Hamiltonian cycle, there is no vertex cover.

When constructing the constituents, as under a substitution, some situations of the original problem are not
considered, so this method is also not suitable for a reduction.

All three methods are not suitable for getting a solution to the original problem via reduction algorithms,
since their goal is to prove NP-completeness, and not to solve one problem through another.

Reduce the 2-AP (NP-completeness of which is proved [11]) to the TSP so that the accuracy of the solution
of the original problem is preserved.
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2-AP definition

The definition of this problem is as follows [11].

There is an upper-level customer who can offer n types of work. m performers who are the lower level per-
form these problems. The following values characterize the customer:

X; — value of the customer's choice: x;= 1 when ordering work of type i, and x; = 0 if otherwise;

Cij — the customer's costs for performing type i of work by j performer (i € 1,j € J, |I| = n, |3 =m).

Vector x has length n and consists of zeros and ones — the customer can order any set of works or refuse
to perform all the works. ITycts 1(X)={i € I, xi = 1} — be the set of ordered works in the variant of choice x.
But it is more profitable for the customer to order a maximum of works that can be performed simultaneously:
(1G] = m.

The following parameters characterize performers:

yij — parameter for selecting performers: yj; = 1 when j performer performs the work of i type, and y;=0 if oth-
erwise;

dij — j performer's income

from doing iwork (i €1, j € J).

Each performer can choose only one type of work I (x) offered by the customer, and only one performer can
perform one type of work.

The lower level problem is to assign work in such a way as to maximize the total income of the performers.
The upper-level problem is to minimize the customer’s costs, taking into account the decision of the contractors
on the choice of work.

Consider setting 2-AP.

Letl={1,...,n}, I={1, ...m} X = (X1, ..., Xn), Y = (Yi})ie1 jeu.

Let there be two real matrices C = (Cij)ie1,jes u D = (dij)ie1, jes. We consider that n >m.

min min > > c,y; 1)

XeX yeY (05 je
where X = {x|xi € {0, 1} (i € I), sumiei(x;) = m}, a Y*(X) — set of optimal solutions to the problem

;;du Y, = min 2

Here Y = {ylyij € {0, 1}, sumiei(y;)) = 1, sumjes(yi) = xi (i €1,j € J)}

Problem (1) is an upper — level problem, and (2) is a lower-level problem. The lower level is a classic
assignment problem. The upper level counts on the best choice of the lower level.

Reduction algorithm

We present a cooperative two-level assignment problem to the traveling salesman problem. For this, we
introduce the following notation:

n (i = 1) — works ordered by performers, the number of which is equal to m — number of performers.

V — instance graph vertices TSP G = (V, E), the number of which is m+n (x; = 1).

E — instance graph edges TSP G = (V, E), in the initial notation is the empty set.

The algorithm implementing the reduction of the cooperative 2-AP to the TSP consists of a sequence of the
following steps.

Step 1. Construct the graph G = (V, E).

Step 2. Add edges to the set E going from vertices m to each vertex n (x; = 1), with weight d;j — 0.1 / ;.

Step 3. Construct edges from vertices n (x; = 1) to each vertex m with weight 0.

Steps 2 and 3 are performed until we have traversed all vertices m and n (x; = 1).

Here is the P-code.

PurposeTSPGraph = createVertices (n (xi = 1) + m)
foreach Vertices m in PurposeTSPGraph do
foreach Vertices n in PurposeTSPGraph do
addEdgeWeight (edge, cam—1/(10*dnm))
end foreach
end foreach
foreach Vertices n in PurposeTSPGraph do
foreach Vertices m in PurposeTSPGraph do
addEdgeWeight (edge, 0)
end foreach
end foreach
return (G, numberVertices)

Let us investigate the reduction algorithm to preserve the accuracy of the solution and determine its comp-
lexity.
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Statement 1. If ¢, d € N, then the reduction algorithm preserves the accuracy of solving the bilevel problem.

Evidence.

1) The algorithm creates paths in the graph only between customers and performers. The traveling salesman
problem is to walk through all the vertices of the graph exactly once, therefore, each performer will receive
exactly one problem.

2) The traveling salesman problem finds the minimum path:

ZZ(dij —ﬁ]a min ©)

iel jed ij

LI R RICHS »aFes “

iel jed iel jed iel jed

To get the minimum value in (3), the first sum in (4) must be minimum and the second maximum.
For the second amount to be maximum, the divisor must be minimum. From this, it follows that what is sought

> > d; > min (5)

iel jed
> > ¢, > min (6)
iel jed

From point 1 it follows that formulas (5), (6) can be reduced to the form

2.2 d;y; = min (7

iel jed yev (9
min min C.V: 8
xeX er(x);jEzJ " y“ ( )

3) Since ¢, d € N, then dij >> 0.1 / cj. It follows from this that the first sum in (4) will be more significant
in the final value than the second sum. This satisfies the condition of the cooperative 2-AP that the upper level
counts on the best choice of the lower level. It follows from this that formulas (7) and (8) are transformed into
formulas (1) and (2).

This completes the proof. Statement 2. The complexity of the reduction algorithm is quadratic.

Evidence.

The algorithm uses a double loop over m and n = 1 twice. It follows from this that [12]:

O(n*m) + O(m*n) = 20(n*m) = O(n*m).

From the condition that n = m it follows that

O(n*m) = O(m?).

This completes the proof.

Software implementation.

In the Java programming language, a program was developed that implements the exact solutions of 2-AP
and TSP, as well as an algorithm for reducing one problem to another (github.com/ShevelevaAnna/
NP_Complate), the program was tested in accordance with [13].

The exact solution to the traveling salesman problem implements the package of classes package npCom-
plateTSP. class ExactSolutionTSP — the class in this package that is responsible for finding the shortest path.
In this class, first the upper bound of the solution is found by the greedy algorithm, then the optimal solution
is found by the method of branches and bounds.

The package npComplateCAP class package is responsible for initializing the 2-AP problem, its exact solu-
tion, and bringing it to the traveling salesman problem. The class CAP is responsible for generating test prob-
lems randomly. Class Reduction2CAPTOTSP is responsible for reducing 2-AP to TSP. The class ExactSolu-
tion2CAP package finds a set of data with the maximum profit for performers and the minimum loss for the cus-
tomer by searching through all solutions.

An example of the operation of this program is shown in the figure. 1

This figure shows that the result of the reduction algorithm is correct. The exact solution of 2-AP turned out
to be 0-> 0, 2-> 1, 1-> 2. The exact solution of the TSP is 0-> 3, 2-> 4, 1-> 5 or, after transformation, 0-> 0,
2->1,1->2.

The program was tested for correctness for matrices of dimension n=3 ... n=10 with natural values generated
randomly. 100 different tests were created for each n. All tests showed that the 2-AP solutions directly and via
the TSP coincide, which means that the reduction algorithm doesn’t affect the accuracy of the problem solution.
The table shows examples of test results.
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Cost array:

[62, 20, 771

e, 25, T Examples of test results
[98, 55, 69]

Salary array:

(12, 24, 73] Ne |n [2-APresult | TSP result

(5, 75, 5]

[81, 54, 52]

1 3 | 021 032415

solution() - ExactSolution.java

Solution 2CAP (Main.java): 0 2 1 2 4 |2301 06172435

toTSP() - Reduction2CAPToTSP.java

Array toTSP (Main.java):

[166660.0, 166600.0, 160000.6, 12.801613, 24.805, 73.0013] 3 5 04231 0519273846

[166000.6, 106600.0, 160060.0, 95.601, 75.60435, 35.001427]

[1606600.0, 100000.0, 100000.6, 81.00102, 54.60182, 52.00145]

[6.6, 0.6, 0.6, 160606.0, 160660.0, 166800.0] 4 6 025413 06183104721139
[6.6, 0.0, 0.0, 100000.0, 166660.0, 160000.0]

(0.0, 0.0, 6.6, 100000.0, 106060.0, 160600.0] 5 7 16051234 0131721238495106 11
greedyAlgorithm() - ExactSolutionTSP.java

tspAlgorithm(@) - ExactSolutionTSP.java 6 8 | 07364521 08115314412513796102 11

Length path =101.80324
Result: [0, 3, 2, 4, 1, 5]

7 9 | 358046172 |01211421741351561081139716

Fig. 1. An example of the program forn =3 |g | 10| 1574923086 |011115217314419512710818613916

Solution capability for an NP-complete problem in polynomial time

Currently, proving the possibility of solving NP-complete problems in polynomial time or refuting it is one
of the seven problems of the millennium. For its solution, the Clay Mathematical Institute awarded a prize of one
million US dollars [14].

If a polynomial solution is found for at least one NP-complete problem, then it will automatically be assumed
that there is also a polynomial solution for other NP-complete problems. In particular, the encryption algorithms
used in asymmetric key cryptography will immediately become defenseless against hacking.

Conclusion

The paper analyzes the existing methods for reducing some NP-complete problems to others. All methods
were aimed at proving NP-completeness, and not at getting a solution to one NP-complete problem through an-
other. It followed from this that the existing reduction algorithms do not simplify the computation of
NP-complete problems. It was decided to create an algorithm for bringing 2- AP to the TSP to find a solution
to the original problem.

The developed reduction algorithm has mathematical studies on the accuracy of getting the solution of the
original NP-complete problem and on the computational complexity. The study outcome showed that this algo-
rithm does not affect the accuracy of the 2- AP solution and that the algorithm has quadratic complexity.

The reduction algorithm was also implemented programmatically and tested for correctness. The test results
confirmed the mathematical study.

In the future, it is planned to extend the described approach to other NP-complete problems and create
a single program for bringing some NP-complete problems to others.
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CraThsl TIOCBSIICHA aKTyaJbHON mpoOjeMe mpuBeacHus oAHUX NP-monHbIX 3amad K aApyruM. OCHOBHOE
BHUMaHHE B paboTe aBTOPHI YACISIIOT pa3padOTKE ajJropuTMa MPUBEACHUS IBYXYPOBHEBOW KOOIEPATUBHOM 3a-
Jla4d O Ha3HAYCHUSAX K 33]aue KOMMHUBOSDKEpA ISl MOUCKA €€ PEIICHUS M MEPEHECCHUs PE3yJIbTATOB PEIICHHSI
onHoi NP-momHOM 3a1a4u B APYyTyIO, IPUBEACHBI KPaTKIE MaTeMaTHIeCKue (QOpMYyITUPOBKH 3a/1a4.

B craThe onmcriBaroTCs POOIEMEL, CBA3aHHBIE C MpHBeneHIHeM oqHIX NP-monHeIX 3ama4 k npyruM. Kak o6-
paser] paccMaTpUBaeTCs MPUMep MPUBEICHIS 3a1a9d KOMMEBOSDKEpa K 3aJade raMIUTbTOHOBA [IUKJIA, TIpeiara-
€TCsI HOBBIH aITOPUTM MPHUBEICHUS IBYXYPOBHEBON KOOIIEPATUBHOM 3aaull O HA3HAUCHISIX K 337a4e KOMMHUBO-
sDKepa, B KOTOPOM PEIICHBI CYIICCTBYIOIIUE TPOOIEMBI MTPUBEICHUS, HAKIABIBAIOIINE OTPAHUYCHUS Ha CaMU
NP-moasIe 3amayn.

Pa3paboTaHHbIl aArOPUTM IPUBEACHUS HCCICAYCTCS HAa TOYHOCTh IOJyYCHHS pE3yJibTara HCXOIHOMN
NP-1o1HO# 3a7a4u W BBIYHCIIMTEIBHYIO CIOXKHOCTh. B pab0Te MaTeMaTHYeCKH MOKa3bIBACTCS, YTO ajIrOPUTM
MPUBECHUS HE CHIDKACT TOYHOCTD MOJYUYCHHS PEIICHHS IBYXYPOBHEBON KOOMEPATHBHOM 3aauyil O Ha3HAYCHU-
X TPU TOYHOM PEIICHUH 3aa4d KOMMHEBOsDKepa. Ha caMu 3a1aun He HAKJIa[bIBACTCS HUKAKMX OTPAHUYUATEITh-
HbIX ycioBuil. Taxxe mpUBEAEHO MaTeMaTHYECKOE J0KAa3aTeIbCTBO MOJUMHOMUAIBHON BBIYMCIUTEIIBHON CIOXK-
HOCTH pa3padOTaHHOTO aJIrOPUTMa IPUBEIACHUS.

JLiist mporpaMMHOHN IEeMOHCTPANUU KOPPEKTHOCTH paOOThl pa3pabOTaHHEIN alTOpPUTM MPHUBEICHHS OBLIT pea-
JIM30BaH HA sI3BIKE MPOTPAMMHUPOBAHKS Java, a TaKXkKe pealn30BaHbl TOUHBIC AITOPUTMBI PEIICHUS ABYXYPOBHE-
BOM KOOTIEPaTHBHOW 3a/1a4ul O Ha3HAYCHUH U 3aJa4yi KOMMHBOsDKepa. Ha naHHO# nmporpaMme ObUTH MPOBEACHBI
IKCIEPUMEHTHI ¢ HAXOXICHUEM pelIcHuH HCXoaHOM NP-TomHOM 3a1aun ¢ pa3InYHbIM KOJIMYECTBOM BXOIHBIX
JTAaHHBIX ¥ MMOJITBEPKICHA KOPPEKTHOCTH PAaOOTHI aJroOpuT™Ma MPUBEICHUS.

B pabote omucaHbl qabHEHITHE IEPCIICKTUBBI 110 HCCICIOBAHUIO JAHHOTO HAMIPABIICHHSL.

Knroueswvie cnosa: 3aoaua kommugosaxcepa, NP-noasnoma, 08yxyposHesas 3a0aua o0 HA3HAYEHUAX, AN2OPUMM
npueedenus, MmoYHOCMb NPUBEOCHUS, BLIYUCTUTNENbHASL CLIOHCHOCHIb.
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