Software Journal: Theory and Applications 2,2020

UDC 004.588
DOI: 10.15827/2311-6749.20.2.1

Development of a multi-user software simulator based on web-technologies

V.S. Ivanov 1, student, mrcitron@mail. ru
S.A. Belyaev 1, Ph.D. (Engineering), Associate Professor, bserge@bk.ru

1 Saint Petersburg Electrotechnical University "LETI", 197376, Saint Petersburg,
Russian Federation

The paper describes the relevance of using software simulators in the operator training process. There is a
problem of developing a multi-user software simulator based on web technologies in the paper. The set of re-
quirements proposed for the developed solution, which are necessary for learning how to perform technological
process operations and developing appropriate action sequences both in the instructor presence and without su-
pervision.

The paper analyzes the available solutions and proposes the developed system architecture, presents its ER-
diagram with key description points that affect its operation.

There is a simulator used by a teacher and a learner. There are differences between the training modes, in-
cluding a mode, designed to learn emergency handling. To show the system capabilities, the authors implement-
ed a few exemplary control panels for training in performing process operations.

The proposed solution has been tested as the «Gazprom Classes» project part. The main advantages of the
proposed solution are the development simplicity and the capability to design the control panes with a visual in-
terface.

Keywords: software simulator, technological process operator, scenario, emergency situation, web-
technology, teamwork.

Nowadays, the technological process (TP) operator’s work is gradually becoming harder and requires solv-
ing more and more difficult management problems [1]. Working with specialized equipment in addition to theo-
retical knowledge often requires practical skills. Training at real facilities can be difficult to implement, for ex-
ample, due to the limited resource of complex technical systems. The solution to this problem is the computer
simulator use, which is being improved along with the information technology growth [2]. Hardware-software
simulators allow you to develop the student’s motor skills, exclusively software versions provide only the study
and the action sequence development. At the same time, the more realistic the controls look, the easier it will be
for a student to work with real systems and assemblies. An important advantage of software implementations
is the ability to develop algorithms for recovering from emergency situations.

Consider the problem of developing a multi-user software simulator based on web-technologies, providing
training in the implementation of TP operations, there are several operators in which. Primary requirements:

e interactive remote display to the operator;
setting and monitoring the correct sequence of TP operations;
role support: operator (student), supervisor (teacher) and editor;
support for TP operation modes: training, testing, and self-testing;
access to the training supervisor for operator test results;
support for operator group work;

e support for emergency situations (branches of the correct sequence of operator actions associated with
any third-party events);

e provide the operator with a text description of the actions that he must perform;

e availability of a web-based interface.

Existing solution

Consider the possibility of solving the problem using ready-made solutions:

simulator Emerson DeltaV [3];

computer simulators SIKE [4];

simulator STDinamika of Systemotechnika 3D [STDynamics of Systematic Engineering 3D];
computer simulators of LLC «Infrastructura TK» [Infrastructure TK LLC];

Unisim training complex [5];

a simulator for operators of technological installations of RPC Krug [RPC Circle] [6].

Software Journal: Theory and Applications 2,2020

The Emerson DeltaV simulator is a specialized training environment that supports role sharing, student col-
laboration, emergency situations, and operator testing mode. However, there is no web version and textual de-
scription of the actions to be performed.

Computer simulators SIKE is simulators for personal computers in which the operator testing mode is availa-
ble and there is a manual in text format, but it does not meet other requirements.

The simulator STDinamika of Systemotechnika 3D [STDynamics of Systematic Engineering 3D] is a soft-
ware and computer complex that has the ability to edit, the ability to use emergency situations, the ability to go
through testing mode and the text description presence of the action sequence.

Computer simulators of LLC “Infrastructura TK” [Infrastructure TK LLC] are a hardware-software complex
for implementing the training environment for personnel of technological installations, which has instructions for
operators, the ability to use the web version, the ability to implement emergency situations and the ability to con-
trol the learning process, but not suitable for students working together and don’t have a built-in editor.

Unisim training complex is a comprehensive training system for TP operators, which allows roles separation,
the contingency use and has an editor, but does not satisfy the rest of the requirements.

A simulator for operators of technological installations of RPC Krug [RPC Circle] is a simulator that in-
cludes: role allocation, students’ team working, contingencies, editor and testing mode, but does not have a text
description of the actions that the operator must perform, there is no web version.

None of the listed solutions fully meets the specified requirements. The most suitable simulators were Emer-
son and RPC Krug [RPC Circle], which have the necessary functionality for training personnel in specialized
rooms with the teacher supervision. However, they are not suitable for self-training and operator training, as they
do not have accompanying training material during work; there is also no web version. The remaining require-
ments are met by the simulator company “Infrastructure TK LLC”, however, this solution is on self-study with-
out role allocation and the possibility of students working together.

The Simulator development

To solve this problem and fulfill all the requirements, there was a software simulator based on scenarios,
its architecture is in Figure 1. In it, unlike solutions based on mathematical models, the correct sequence of ac-
tions is set by the scenario, deviations are unacceptable [7].

Roles in the system are with the authorization module using. For each role (operator, teacher, and editor),
a set of features is the corresponding interface using.

There is the scenario display component to solve the problems of describing operator jobs and running the
simulator scenario. Using the demonstration module, an object is sent from the server containing the resources
(images and audio files) used in the simulator, and all components: the scenario, control panels and elements for
the panels. The ER diagram of the implemented solution is in Figure 2.

To organize group lessons, the teacher uses the component of group lessons organization. At the same time,
the action synchronization between trainers in the framework of a group lesson occurs using the synchronization
module. After completing the step, one of the operators sends a message with the number of the completed step
to the rest of the TP participants using web-sockets. At the moment of receiving a message, there is the automat-
ic step completion.

The teacher can view the results of operators and change grades using the learning results control module.

There is an editing component to create and edit simulators. This module works in conjunction with a re-
source loading module for adding images and audio files, and with a module for working with JSON files to
check the compliance of the simulator modifiable parts (scenario, panels, elements) with JSON schemes.
The JSON-scheme structure is based on the developed solution structure, presented in Figure 2.

Optional fields have a mark with a «?» after the name.

The simulator is set in JSON format and consists of:

e JSON with elements (a elements’ collection, in the figure — orange with the index 3, the root element —
Elements);

e JSONs with remotes (in the figure — green with index 2, the root element is Panel);

e JSON with scenarios (in the figure — red with index 1, the root element — Course).

Each simulator stage consists of a step set (step) and is considered passed when all steps are completed.
An abnormal situation is a stage in which a branch from the startStep step of a stage called stageName occurs.
An abnormal situation may return to the normal stream if the endStep attribute is specified.

Each step has a number assigned to it, which indicates the order in which the step should be performed with-
in the stage to which it belongs. The step corresponds to a certain operator role (role), the active zone (active-
Zoneld) of the element (itemld) on the panel (panelld) and the action (action), which includes the necessary
checks, after passing through which the logic specified by the editor in the code of this action is executed.
The action will have activation if all the steps specified in the attribute (previous) have an execution. Because the
simulator allows several roles within one stage, and one operator can have only one role at a time, then for each

2

Software Journal: Theory and Applications 2,2020

Presentation level
/I’ \“
/
! Learner interface :-
\\\ /
A
Y
Script display module The editing module
P2t N
- N N N
Control panel ! I [H
S I l
visualization | Control panel editing | ! Script editing " Code editing !
i [L)]
| S L IR HE i JSON schemas
P . BEAN SN B
Information support ’ 5
The scenario simulator
N e dmmmemee A dule for ing diagram
e . Authorization module
i N learning results N e L
Automatic script emmeeecce——————— N
execution
\ ; The simulator control
B T] - dule for izi dule for working | » scheme
group classes with JSON files J‘ N L
P 2uhuie i N
i The remote trainer
circuit element
\ /
Module for interacting with the REST API Vuels ToTTTTTTTTTTTTTT
P 2uhuie N
sooet HTTP The tileset scheme
ockets JSON L §
The business logic level v
Express
A
A4
L L Editing module
— Synchronization module Authorization module
Vol
P
Script editing ! ! Element editing
o
N
Demonstration module Resource loading module N
T
Control panel editing i i Content editing
4" :\
Training results monitoring
module
Nodejs
A
A\ 4
D
A
\4
The data access level -
A database that stores user data,
training results, simulators, etc.
PostgreSQL
Fig. 1. Simulator architecture

function (function), which receives the action parameters and checks whether it is executed correctly, the auto-
Function function should be implemented, which will automatically lead the console to a state that satisfies the
checks in function. In Figure 3 presents an activity diagram demonstrating the operation of this mechanism. Ini-
tial checks for performing the necessary actions and for an element that had an interaction with the user, has

3

Software Journal: Theory and Applications 2,2020

an association with the number, previous, and itemld and panelld fields, respectively. Then there is a condition
check in function and the role field of the next step. If the operator does not have an assignment for the received
role in the current lesson, then there is an autoFunction for the next step, which guarantees successful completion
of the function checks for the next step and allows you to complete training without assigning students to some
of the stage roles.

(1) stage
name: string "_I—p; @ Step
steps: steps[] — ylid:integer
stageName?: string number: integer —————————H panelld: integer
startStep?: integer —H role: string itemId: integer
endStep?: integer action: action activeZoneld 4
rolesOnPanel: roleCnPanell] description: string function: functionRef
previous: integer(] autoFunction: functionRef
@ Course
@roIeOnPaneI name: string
= -
role: string roles: string[]
panel: integer HH— stages: stage[]
R @) Panel — o< (@) itemRef
(@) tool -
. id: integer
name: string L——H id: integer H— 7)
: st itemld: integer
textureld: resourceTexture name: stang tooltin?: stri
- background?: resourceTexture Oolip: siring
coords: coords
items: itemRef[] H—
rotation?: rotation
tools: tool[]
displayFunctionValues: Object
code?: code play :
m = . zindex?: integer
@ sizes H————————1#: sizes: sizes
canvas?: size
container?: size
(3) Elements
items: tem[] H——0 G) item () layer
code: code id: number texture: textureOrTile
l:l TpeHaxep displayFunction: functionRef coords: coords
e displayFunctionValues: Object rotation?: rotation
Mynet
extendRedraw?: number
Konnekuws anemeHTOB layers: layer]]
activeZones?: activeZone[] H——0€ @ activeZone
id: number +-
«coords: coords
function: functionReference
events: string[]
1. Trainer

2. Control panel
3. The element collection

Fig. 2. The structure of the simulator

To reuse items, they have a division into items in the collection (item) and on the remote (itemRef).
The function displayFunction displays an item in the collection on canvas [8] using the parameters specified
in displayFunctionValues. The list of textures used in displaying the element is in layers. When interacting with
the active zone (activeZone) of an element, there is an activeZone.function, which allows you to update the dis-
playFunctionValues of the element and thereby change its appearance. The item on the remote contains a pointer
to the item in the collection corresponding to it, as well as its coordinates on the remote. At the same time,
the displayFuntionValues in the element on the remote control overrides the values of the display parameters
in the collection, and the element in the collection does not change when the scenario is executed, all changes
are in the element on the remote.

4

Software Journal: Theory and Applications 2,2020

[otherwise] [otherwise] [otherwisel" parform the step
function

[the necessary [the action is
actions were not on the wrong

[edit mode] performed] element]

v

[incorrect result]

(add a step] (add an error Jq ‘

[otherwise]

Y
Send information [group training] (Set the step
<
across the socket L passed

[otherW|se]

P‘ [Perform automat J

autoFunction
A

. 7
[final step] [there are still steps left] Check the role of
Show the result DL the next step

‘ [otherwise]

[an operatoris |

assigned to the role]
>‘<

Fig. 3. The step diagram

Scenarios, control panels and remote-control elements are in a database in jsonb format [9]. This solution al-
lows you to abandon the data integrity restriction in query performance favor and the stored structure simplifica-
tion.

Using the Simulator
In the proposed solution, the operator can use the scenario execution modes:

e individual training;
e individual self-test;

Software Journal: Theory and Applications 2,2020

e group training;

e group testing.

The training mode differs from testing in the ability to view the instruction, which contains a textual descrip-
tion of all steps for each role, and at the same time, there is a selection of already completed steps.

In the individual mode, the student himself chooses the stage and role for the scenario, the remaining role ac-
tions of the selected stage are automatic. In the training mode in the group, the teacher assigns students to roles
and selects the stages for passing. Operators need to follow the action sequence for each role and wait for the ac-
tion completion of their colleagues in the team. If a team does not have any roles, the role actions will perform
automatically.

The student can use different tools to perform actions. In those cases when the operator performs an action
not according to the scenario (the wrong element, the wrong element state, the wrong tool, too early), then he re-
ceives a text notification about the error and the error counter increases. Upon the work completion, the student
receives an assessment, depending on the number of mistakes.

The teacher and editor are available to individually execute scenarios, as well as the operator.

The teacher has the opportunity to organize group classes. He selects the steps that the operators will per-
form, distributes them into groups and roles within each group. The group training uniqueness lies in the real-
time collaboration possibility and joint algorithm development for recovering from emergency situations.
Abnormal situations are unavailable for individual training and are hidden from students. This allows you to
check not only the learned material but also the analysis skills of emergency situations using various approaches,
for example, fuzzy logic [10].

For the editor implemented interfaces:

e resource loading;

e changes in operator roles;

e adding and changing control panels;

o control panel editing elements;

o the simulator scenario formation.

Adding and removing stages that have an attachment bundle console and role form the simulator scenario.
After adding a stage and assigning roles to the panels, the editor, either using the provided visualization (the
mode of execution of a script by recording step-by-step), sets the step sequence and then refines them in the pro-
vided scenario editor, including setting preconditions, postconditions, delays, etc. If the changed simulator does
not correspond to JSON-schemes or if there are other errors (for example, there is a nonexistent resource), the
editor sees the error counter display with a detailed description. The editor has the opportunity to perform the
step sequence of the stage himself using the scenario display module.

The developed simulator tested like in [11] and integrated into the «Gazprom Classes» system. The work
demonstration on the control panels is in Figures 4 and 5.

Turn off Resat Emergency

produict S AR Reserve

Turn on
’ o Tumn on Tum on G
CVM-O CVM-R S Tum off

Turn on Turn off Tumn off Tum off

Fig. 4. Work at the 1st panel

Software Journal: Theory and Applications 2,2020

(4 Trap | Trap Il Trap Il Waste L
(8] (&) o (&]
@ &’ @ \1/
work permission | reserve control drive control
turnon auto turnon open auto close |turnonll auto turnon ready to refuel
N1/ N1/ AN |

w [4 w o

@ AN EMERGENCY MANAGEMENT PANEL @

Fig. 5. Work at the 2nd panel

Conclusion

An important advantage of the developed solution is the relative simplicity of creating scenarios because it
does not require the mathematical model construction and have a restriction by the minimal knowledge presence
of the JavaScript language. However, behind the creation simplicity lies the main limitation — the need to strictly
follow the scenario in the learning process, which makes it not universal from the full study viewpoint of TP [7],
since there is no way to study the reaction to actions outside the scenario. The developed software simulator
complies with all the requirements for such solutions and can be used to train operators of technical systems and
complexes when performing operations on a technological schedule. The system can be applied in various fields
of application since the development of execution sequence in various fields of activity differs only in the
equipment over which actions are performed and editing of which is in the system.

The proposed solution has been tested as part of the Gazprom Classes project and is for training future TP
operators. Further development of the developed system is possible with the mathematical model partial use,
which will expand the simulator scope and will not lead to a significant complication of the scenario develop-
ment process.

Referenses

1. Dozortsev V.M. New challenges to industrial safety — will computer simulators help? Occupational Safe-
ty in Industry, 2019, no. 9, pp. 31-38 (in Russ.)

2. Nagimov T.R., Nikulina N.O. Reengineering the process of training enterprise employees using simula-
tors. Proc. Conf. Technological Cooperation in Science and Production: New Ideas and Development Prospects,
2018, pp. 77-85 (in Russ.)

3. Kreidlin E.Yu. DeltaV control system - from process control to operator training. Automation in the In-
dustry, 2016, no. 3, pp. 13-16 (in Russ.)

4. Chudinova Yu.A., Tikhonov A. V. Trainer-simulator «SIKE. Metal rolling in a reversing rougher heavy
bar mill stand». Pass Design Bureau, 2017, no. 11-17 (in Russ.).

5. Dozortsev V.M. High-Precision Modeling of TP on Real Examples of Simulator Projects. 2017. Avaible
at: https://www.honeywellprocess.com/en-US/online_campaigns/russian-technology-summit/Pages/document/
2017/day2/10.%20BsicokoTounbie%20tpenaxepubic%20momenu.pdf_(accessed February 14, 2020) (in Russ.).

6. Proshin A.l., Shekhtman M.B. CPC “Trail” - a universal tool for the development of simulators for opera-
tors of technological plants. Informatization and Management Systems in the Industry, 2019, no. 2, pp. 109-111
(in Russ.)

Software Journal: Theory and Applications 2,2020

7. Belyaev S.A. Software simulators based on mathematical models of complex technical devices. Modern
Education: Content, Technologies, Quality. Proc. XXV Conf., 2019, pp. 288-290 (in Russ.)

8. Kochitov M.Ye. Consider the possibility of web drawing on HTMLS5 using the canvas. Postulate, 2018.
Avaible at: http://e-postulat.ru/index.php/Postulat/article/view/1752 (accessed February 14, 2020) (in Russ.).

9. Petkovi¢ D. JSON integration in relational database systems. I. J. Comp. Appl., 2017, vol. 168, no. 5,
pp. 14-19.

10. Ekalo A.V., Kudryakov S.A., Shapovalov E.N., Ostapchenko Yu.B., Belyaev S.A. Algorithm for making
informed decisions in emergency situations based on models of fuzzy sets. Bull. ETU "LETI", 2016, iss. 9,
pp. 16-21 (in Russ.).

11. Chernaya O.S., Fedorova Yu.Yu., Belyaev S.A. Applying of methods and tools to automated testing tel-
emetric data processing software. Bull. ETU "LETI", 2013, iss. 9, pp. 55-58 (in Russ.).

VIK 004.588
DOI: 10.15827/2311-6749.20.2.1

Pa3padoTrka MHOI0NmoJib30BaTe/IbCKOI0 IPOrPaMMHOI0 TPeHa:Kepa ¢ UCN0Jb30BaHueM web-TexHo10rui

B.C. Hsanos *, cmyoenm, mrcitron@mail.ru
C.A. benses *, k.m.n., doyenm, bserge@bk.ru

Y Canxm-Ilemepbypeckuil 2ocyoapcmeennviii snexmpomexuuveckuii yuusepcumem «JIDTHy, 2. C-Ilemep6ype,
197376, Poccus

B crarbe 000CHOBaHa aKTyaJIbHOCTh HMCIOJIb30BAHUS IPOrPaMMHBIX TPEHAKEPOB B OOYyUEHHH OIEPaTOpPOB
TEXHOJIOTHYECKHX TpolieccoB. PaccMoTpeHa 3a1aua pa3paboTKi MHOTOIOJIB30BATENLCKOTO NPOTrPaMMHOTO Tpe-
Ha)kepa Ha OcHOBe web-TexHomorui. s aToro ObuT chopmMupoBaH Habop TpeOOBaHUIT K pa3pabaTeIBaeMOMY
pELIeHU0, KOTOphIe HEOOXOAMMBI U 00y4YEeHHUs BBIIIOJHEHUIO OIepaliii TEXHOJIOTMYECKOro IMporecca 1 s
OTpabOTKM COOTBETCTBYIOIIMX IOCIIEOBATENBHOCTEH AEHCTBHI KaK B IPUCYTCTBUM MHCTPYKTOPA, TaK M B €TO
OTCYTCTBHUE.

B craTbe BBINOJNIHEH aHAIN3 TOTOBBIX PEIICHWI U MPUBEIeHa apXUTEKTypa pa3pabOTaHHON CHUCTEMBI, TIpel-
ctaBneHa ee ER-guarpamma ¢ onmucannem KIIFOYeBBIX MOMEHTOB, BIUSIOMINX Ha ee paboTy.

OnucaHo NMpUMEHEHHE TPEHaXepa IpernojaBarelieM U 00y4aeMbIM, TI0Ka3aHbl OCOOCHHOCTH Pa3HBIX PEXKH-
MOB, B YaCTHOCTH, PEXHMa JUI1 00yUeHHUsI aITOPUTMaM BBIXO/la U3 HEIUTATHBIX cuTyauuii. [IpeacraBieHsl npu-
MepHI ITyJIbTOB YIPaBJICHHS, KOTOPBIE PEATN30BAHBI B JAHHOW CHCTEME C LIEJIBIO UCIIOJIB30BaHUS JJIsl 00y4eHHs
BBITIOJTHEHHIO OTlepalyii TEXHOJIOTHUECKOTO Mporecca.

[IpennoxeHHoe pemeHre anpoOMPOBaHO B paMKax npoekra «l asnpom-knaccel». OCHOBHBIE NPEHMYIIECTBA
NPE/I0KEHHOTO PEIIEHHsT — NPOCTOTa ONUCAHUs CIIEHApHUEB M BO3MOXHOCTb BH3YaJbHOI'O (OPMUPOBAHMSA
MyJIETOB, KOTOPBIMH TTOJIb3YIOTCS OIIEPaTOPBI IIPH BHIIIOJIHEHUH OlNlepannii TEXHOJIOTHYECKHUX MPOLIECCOB.

Knrwouesvie cnosa: npocpammubiii mpenasicep, onepamop mexHoI02U4ecko20 npoyecca, CYeHaputl, Heumam-
Has cumyayus, web-mexmnonoauu, coemecmuas paboma.

Jlumepamypa

1. Jlozopiues B.M. HoBble BHI30BBI IPOMBINIIIEHHON O€30MMaCHOCTH - MIOMOTYT JIM KOMITBIOTEPHBIE TPEHAKE-
pu1? // Be3omacHocTh Tpyaa B mpoMbinuieHHOCTH. 2019. Ne 9. C. 31-38.

2. Harumos T.P., Hukymuna H. O. PeumxuHupuHr nporecca o0y4eHUsI COTPYIHUKOB MPEANPHUATHS C T10-
MoLIbI0 TpeHaxepoB // TexHojornueckas KOONEpalysi HAyKH W MPOM3BOACTBA: HOBBIC MAEU M IEPCHEKTHBBI
pasBurust: co. Tp. koud. 2018. C. 77-85.

3. Kpeiignun E.JO. Cucrema ynpasnenus DeltaV — ot ynpasnenus nporeccamMmu K 00y4eHHIO o1iepaTopos //
ABTtomaruszauus B npoMbinuieHHoct. 2016. Ne 3. C. 13-16.

4. Yynunona lO.A., Tuxonos A.B. Tpenaxep «SIKE. IIpokaTka MeTamia B peBEpCHBHON KJIETH KPYITHO-
coptHoro cranay // Kaimmbposounoe 6ropo. 2017. Ne. 11-17.

Software Journal: Theory and Applications 2,2020

5. Jo3opuer B.M. BricokoTounoe monempoBanue TII Ha peambHBIX MpUMepax TPEHaKEPHBIX IPOEKTOB //
Iepenorsie pemenus Honeywell s uudposoit akonomuku. 2017. URL: https://www.honeywellprocess.com/
en-US/online_campaigns/russian-technology-summit/Pages/document/2017/day2/10.%20BsicokoTounbie%20
TpeHaxepHbie%20moaenu.pdf (nara obpamenus 14.02.2020).

6. Ilpommu A.U., lllextman M.b. KTK «Tpoma» - yHHBepcaldbHOE CPEICTBO pa3pabOTKU TPCHAXKECPOB
JUISL OIIEPaToOpPOB TEXHOJIOIMYECKUX YCTaHOBOK // VH(opMaTn3aims M CUCTEMBI YIpaBieHHs B IPOMBIIIICHHO-
ctu. 2019. Ne 2. C. 109-111.

7. BbenseB C.A. [IporpaMMHBIE TpeHa)KEpPHl HA OCHOBE MAaTEMATHYCCKUX MOJENICH CIIOKHBIX TEXHHYECKHX
ycrpoticts / CoBpeMeHHOe 00pa30oBaHIe: COMEpKaHNE, TEXHOIOTHH, KauecTBO: Marep. XXV MexmyHap. Hayd.-
Metonnd. koHd. 2019. C.288-290.

8. KoumroB M.E. PaccMoTpenne Bo3MoxHOCTH BeO-prucoBanus Ha HTMLS ¢ momomipio canvas // Tlocty-
nar. 2018. URL.: http://e-postulat.ru/index.php/Postulat/article/view/1752 (nara obpamenus 14.02.2020).

9. Petkovi¢ D. JSON integration in relational database systems. 1. J. Comp. Appl., 2017, no. 5, pp. 14-19.

10. Okano A.B., Kynpskos C.A., lllanosanoB E.H., Ocramuenko 10.b., benses C.A. Alroput™ npuHATHSL
00OCHOBaHHBIX PEILICHUII B HEIITATHBIX CUTYallUsIX HA OCHOBE MOJieliel HeueTKnx MHokecTB // 13B. CIIGIDTY
«JIDTU»: UudopmaTrika 1 komnbroTepHbIe TexHOTorHU. 2016. Ne 9. C. 16-21.

11. Yepnas O.C., ®enopora F0.10O., benses C.A. [IpumeHeHre METOJIOB U CPEJCTB aBTOMATH3UPOBAHHOTO
TECTUPOBAHUS JUIS MPOBEPKU Ka4eCTBa MPOTPAMMHBIX KOMIUIEKCOB 00pabOTKH M3MEpUTENbHON HHpOpMarmu //
HUzs. CIIGI'OTY «JIDTU»: KomnbroTepusie n MHGOpMalMOHHBIE TEXHOJIOTHH B Hayke u oOpasoBanuu. 2013.
Ne 9. C. 55-58.

