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At present, we often face the task of extracting useful information from a large amount of raw data. This pro-
cess, called Data Mining, combines various approaches to the analysis and processing of data, but it always be-
gins with one specific step — data cleansing. The raw data entering the analysis are often incomplete, weakly
structured, they contain duplicate information and anomalies. The presence of anomalies in the array of input da-
ta can lead to incorrect interpretation of the extracted information, errors in prediction and greatly reduce
the value of the knowledge obtained. Therefore, the development of new approaches to the elimination of anom-
alies, or outliers, is an actual task. This article discusses an approach to detecting outliers, based on hierarchical
data clustering and using a voting method to identify the most likely candidates for the role of outliers.
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It is known that cluster analysis is one of the directions of data analysis, which studies the methods of divid-
ing the set of source data into separate classes (clusters) using some proximity functions [1]. In this case, the data
elements are grouped into clusters according to the principle of maximizing intracluster and minimizing inter-
cluster communications. Formed clusters can later be used to classify newly arriving data and create templates
for data processing (since data elements belonging to the same cluster have similar properties determined by se-
lected proximity functions).

Let's look at the most well-known methods of cluster analysis. Perhaps the most common is the k-means
method [2], aimed at minimizing the total quadratic deviations of cluster points from their centers. The main dis-
advantage of this method is the need to know in advance the number of clusters. One of the variations of the
k-means method is the k-median method, in which its median is taken as the center of a cluster. EM-algorithm
(Expectation-Maximization) is used when the data are described using a model with hidden variables [3].
The EM algorithm works iteratively, each iteration consists of two steps: E calculating the expected values
of hidden variables, M maximizing the likelihood function, which updates the probabilities of data elements be-
longing to specific clusters. Algorithms of the FOREL family are aimed at separating objects into separate clus-
ters that are in areas of maximum concentration [4]. These algorithms are rarely used, since they require some
a priori knowledge about the data being analyzed, and the result of their work strongly depends on the initially
selected cluster search points. You can also note the use of Kohonen artificial neural network for clustering,
or a self-organizing feature map [5]. Kohonen's neural network contains two layers, the neurons of the output
layer correspond to clusters, which produce the larger signal, the closer the data element to the network is locat-
ed from the corresponding cluster. By changing the size of the output layer, you can achieve a more detailed
clustering of data. Genetic algorithms based on a combinatorial search for a solution by applying natural evolu-
tion mechanisms (inheritance, mutation, selection, crossing-over) to instances of dividing a set of data into clus-
ters are also used for clustering data [6]. Finally, we should note hierarchical algorithms that allow to build data
combining trees into clusters by successively merging small clusters into larger ones, until the entire set of data
is divided into the required number of clusters [7].

From the methods for detecting outliers, four main directions can be emphasized. They use different charac-
teristics, on the basis of which decisions on the recognition of an object as an outlier are made: data on statistical
distribution (distribution-based), distance between elements (distance-based), local data density (density-based),
cluster deviation (deviation-based) [8]. Statistical methods for determining outliers are used mainly for one-
dimensional data, when the hypothesis of the conformity of data elements to a certain distribution is checked
using a priori or accumulated information on the distribution [9]. Among the numerous criteria for statistical de-
termination of outliers, we can mention the criteria of Chauvene, Irwin, Grubbs and many others. As a method
for determining outliers using the distances between elements, we can note the method of k nearest
neighbors [10]. In this classification method, a new data element refers to the cluster to which most of its already
classified neighbors belong. The criterion for the release in this case is the absence of the mentioned majority,
which makes it impossible to make a choice. The method of determining the local density involves calculating
the density of data at each point in the data set and recognizing the outlier of a data element whose density dif-
fers significantly from the density of its neighborhood [11]. Finally, the latter direction involves the clustering
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of data, after which some statistics are collected within each cluster. Those data elements whose characteristics
are very different from the statistical characteristics of their cluster are recognized as outliers.

The article discusses the method of determining outliers, based on the implementation of hierarchical data
clustering and subsequent analysis of the constructed cluster merge tree.

Description of the hierarchical clustering method using dendrogram construction

This section describes the method of hierarchical or sequential clustering of data represented by points
in k-dimensional space. The initial data of the hierarchical clustering algorithm are a set of n points P = {P1, P,
.., Pn}, and the number of clusters m < n, into which the given set of points should be divided. At the beginning
of the algorithm, we consider the reduced set of points as a set of clusters Q1 = {P1}, Q2 = {P2}, ..., Qn = {Pn}-
While the current number of clusters exceeds the specified number m, we perform the sequential merging
of clusters into larger ones. At each step, we will merge only the two nearest clusters. Let in the considered set
of clusters Q1, Q2, ..., Qt the closest in some sense are the clusters Qi and Q;j (i < j). Then after combining them,
the new set of clusters will look like Qq, ..., Qi.1, Qi U Qj, Qi+, ..., Qj1, Qj+1, -+, Q.

The result of clustering strongly depends on the proximity function, which is used to determine a pair of clus-
ters for merging. We will consider the following types of proximity functions [12]. The minimum local distance
between clusters will be called the value

Dmin (Qa ’ Qb) = ae(g:,ibr!Qb d (a, b) ,

where d(a, b) — arbitrary proximity function between two points a and b. In the following, we will also call this
function the distance, although in the general case it may not be a distance. Similarly, we introduce two more
proximity functions for a pair of clusters. The maximum local distance between clusters is called

Dmax (Qa ! Qb) = aerg:%)éQb d (a, b) '

and the average distance between clusters is

D, (Q,.Q,) = maeqzbeo d@a.b).

Now consider the functions that will be used as the distance between individual points. First, we use
I, — norm, which is given by the formula

dp(a,b)z(zk:|ai—bi|pjp,

and gives the Euclidian distance in case p = 2 and the sum of the modules of the differences of the corresponding
coordinates in the case p = 1. When the value of p goes to infinity, we get a supremum norm written in the form

In addition to the considered distance functions, we will also consider the Jeffreys — Matusita measure cor-
rected for the region of negative coordinate values, as shown in the formula

M (a,b) = (i(sign(ai)ﬂ—Sign(bi)\/m)zjz |

also a measure known as the divergence coefficient, similarly corrected for a region of negative coordinate
values

1
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So, we fix a specific view of the distance function between clusters and perform hierarchical clustering
for this function. In the process of performing the clustering procedure, we build a dendrogram — clustering
tree [13]. To build a dendrogram, each cluster will be assigned a binary tree (Fig. 1).

A tree can have only two descendants (binary trees corresponding to the clusters from which the current clus-
ter was obtained), as well as one parent (a binary tree corresponding to the cluster in which the current cluster
enters as part), as shown in Figure 1. Before the clustering begins each point of the considered set obtains
its own tree without descendants and parents. The tree accumulates a specific point. At each step of combining
two clusters, the corresponding trees become descendants of the newly created tree. The process continues until
exactly m trees remain, each of which corresponds to a separate cluster. The clustering process can be continued
until all the trees are combined into one tree, which is the complete dendrogram of hierarchical clustering.

Consider as an example two simple clustering dendrograms composed for two test sets of points using a sim-
ple Euclidean distance between points and an average distance to determine the proximity of two clusters. First
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consider the set of points P = {(x, X)| x =1, 2, ...,
parent 16}. It's just a set of 16 points lying on a line
y = x. When clustering is performed, first 8 pairs
of points will be merged, where the distance be-

tween the points in each pair is equal to ~/2 , after
which we get 8 clusters whose centers are also
located on a straight line y = x at regular intervals.
right child Then they will be combined in pairs into 4 larger
clusters, then in 2, and in the end there will
be one cluster. The result of clustering is shown
Fig. 1. Binary tree used to build dendrograms in Figure 2. _
for hierarchical clustering The figure shows that the set of points does

not contain outliers, the dendrogram built during
clustering is a balanced tree.

Now consider another set of points whose coordinates are given by the formula P = {(x, 2¥)|x=1, ..., 8}.

This set of points lies on the graph of the exponent. In the first clustering step, the first two points will merge
into a larger cluster. At each next step, the next point on the graph will be added to the already existing cluster,
since the distance between it and the cluster is less than the distance between any two free points. As a result,
a completely unbalanced dendrogram can be observed (Fig. 3). In this case, when setting a goal to find outliers
from the proposed data set, a decision should be made to exclude a point that joined the cluster later than
the others. We define more clearly the characteristic with which we will identify outliers.

left child

Fig. 2. A test set of points lying on one straight line at regular intervals (left),
and a dendrogram constructed for a given set (right)

Fig. 3. A test set of points lying on the exponent graph (left),
and a dendrogram constructed for a given set (right)
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Suppose that for some data set a complete dendrogram is constructed before all points are merged into one
cluster. This dendrogram contains information about all intermediate clusters that were formed during the clus-
tering process. For each node of the dendrogram t, it is possible to naturally determine the height function h(t).
For leaf nodes this function is equal to one, and for nodes with descendants it is one more than the maximum of
the heights of its two descendants. The fact of late attachment of a certain data element to an already formed
cluster means that two trees merge together with a large difference between the values of their heights.
That is the value h(p(t)) — h(t) is great, where p(t) — parent of t. There is one inaccuracy in this formula.
If the tree t in itself is an already formed cluster, then you should not rush to recognize it as an outlier, even
if merging with another cluster does not happen soon. To take this into account, the final value should be divided
by the width of the tree, or the number of leaf vertices contained in it (we denote this value by w(t)). Thus, we
obtain the final outlier identifier, determined using the formula

= NEO)-he)
w(t)
We assume that all nodes of the dendrogram with the largest value of the function z are outliers.

Applying a voting method to determine the most likely outliers

The method discussed in the previous section allows you to identify potential outliers from a dataset when
building a hierarchical clustering dendrogram. However, as already noted, the type of dendrogram substantially
depends on the choice of the distance function between points and the proximity function between clusters.
And if dendrograms are different, then candidates for outliers will be different. To resolve this dispute, apply
a voting method to determine outliers. That is, we will perform clustering for all the available distance functions
between points, and for each distance function use all the proximity functions between the clusters. For each
fixed mode, we will determine a constant number of potential outliers, and then for each leaf node marked
as a potential outlier, increment its counter. After all possible clustering modes have been performed, outliers
are recognized as those data elements whose outlier counters are maximum.

Analysis of the results

To test the proposed voting method for determining outliers during hierarchical clustering, test sets of 200
two-dimensional points were generated in the square —50.0 < x < 50.0, —50.0 <y < 50.0 (Fig. 4), clustering on 12
clusters was performed for each set. The minimum local distance (min), the maximum local distance (max), and
the average distance (avg) were used as the proximity functions between the clusters. As functions of distance
between points the following functions were used: d; ((the sum of the modules of the differences of the corre-
sponding coordinates), d> (Euclidean distance), da ((distance using the norm l4), ds (Supremum-norm), M (meas-
ure of Jeffreys-Matusita), DC (divergence coefficient). Thus, there are a total of 18 clustering execution modes.
Figure 5 illustrates the visual-
QO ization of a hierarchical cluster-

. -..-. o

Fig. 4. An example of a test set of points to perform clustering

ing tree. The top row of leaf
nodes corresponds to the original
array of clustered points. Each
cluster as data encapsulates a
point on the plane, which is its
center. For leaf nodes, this is just
the starting point. When two
clusters merge, which correspond
to the trees t; and t; with the cen-
ters p1 and py, respectively, a new
cluster t is formed with the center
at the point

_ P, + P, W,
W, +W,

where wy and w; are the width of
trees ti and ty, respectively.
The nodes corresponding to the
desired clusters in Figure 5
are circled in concentric circles.
The figure also shows 3 outliers.
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| | |
Fig. 5. Construction of a dendrogram when using as a distance between clusters
an average distance between points using supremum-norm

Figure 6 shows the visualization of dividing points into clusters with outliers, and figure 7 shows three outli-
ers defined by voting methods after clustering by all 18 modes (the radius of the outlier label is proportional
to the number of votes cast for this point).

After a vote on the determination of outliers, the question arises: which functions of the distances between
clusters are most appropriate in identifying clusters. To determine this, experiments were conducted with 10 dif-
ferent sets of test data, the results of which are presented in a matrix (Fig. 8).
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Fig. 6. The result of clustering for the dendrogram Fig. 7. The result of voting in determining
from Figure 5 outliers

In Figure 8, all used clusterings are shown vertically (all variants of cluster proximity functions), 10 test cas-
es are marked horizontally. Each cell of the matrix contains a number from 0 to 3, corresponding to the number
of guessed outliers in a particular clustering mode. For the analysis of the matrix, at first, the set with the lowest
average guessing index (set No. 9) and the set with the highest average guessing index (set No. 4) were excluded
from the analysis. It was further noted that the use of the minimum local distance during clustering leads to a de-
crease in the number of guessed outliers, therefore, these modes were also removed. As can be seen from
the figure, the greatest number of guessing is achieved using the distance functions ds, d, and d; in descending
order.

At the end of the experiment, Figure 9 shows the visualization of the clustering of the test set of points from
Figure 7 with different distance functions with different numbers of guessing outliers. From the above visualiza-
tion, it can be noted that clustering with an outlier guessing value of 2 and 3 looks more adequate than in modes
where the number of guesses is 0 or 1.
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rejected

d |min |2 |2 |2 |2 |[1]|2]|e|1|21]|2
submode

max
} 1.5 (1.38, 1.63)

rejected

d n submode

} 1.69 (1.63, 1.75)

rejected

dy | min submode

} 1.75 (1.5@, 2.88)

avg
. rejected
ds min submode
max
} 1.56 (1.13, 2.@8)
avg
M min rejected

submode

} 1.56 (1.50, 1.63)

rejected
submode

DC | min

} e.51 (e.88, e.75)  FiQ. 9. The result of clustering under different

Ll 2 ° © conditions for different amounts of outliers
e e pene 4 g oot nessing predictions: «) three guessing avg(d);
b) two guesses max(dy); c) one guessing
Fig. 8. Matrix of guessing outliers by different clustering modes max(d1); d) no guessing min(M)
Conclusion

In the framework of this work, the algorithm of hierarchical clustering of two-dimensional points using vari-
ous proximity functions between clusters is considered. A voting method was proposed to identify potential can-
didates for outliers, and an analysis was conducted to identify those proximity functions that achieve the greatest
number of outliers predictions. It is noted that clustering performed on such modes visually looks more adequate
than on modes with a low number of guesses.

Research conducted within the framework of this work can be continued, since it would be interesting to see
how the voting results will change if use not hierarchical clustering methods.

The work was done in JSCC RAS with the support of RFBR grants 18-29-03236 and 19-57-60004.
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OBHAPY)KEHHE BBIBPOCOB METO/JIOM I'OJIOCOBAHUA ITPU IIPOBE/IEHHU
HEPAPXHYECKOH KJIACTEPH3AITHH JJAHHBIX

A.A. Poioakos, x.¢h.-m.1., seoyuuil nayumwiti compyonux, rybakov.aax@gmail.com, rybakov@jscc.ru;
C.C. Hlymunun, cmapwuii unocerep, shumilin@jscc.ru

(Meswceedomcmeennsiti cynepkomnviomepruiid yenmp PAH — ¢unuan HUHUCH PAH,

2. Mockea, 119334, Poccus)

B Hacrosiiee BpeMsi 4acTO NMPHUXOJUTCS CTaJKHBATHCS C 3amadyell W3BJICUCHUS TIOJIC3HOW MH(OpMAIMU U3
00JIBIIOr0 00BbEMa UCXOAHBIX CHIPBIX JaHHBIX. JTOT MPOLECC, NOJTy4nBILUH Ha3BaHue Data Mining, oObeauHsieT
B cebe pas3iM4Hble MOIXOABI K aHAINU3Y U 00pabOTKe JaHHBIX, OHAKO BCEraa HAYMHACTCS C OJHOTO KOHKPETHO-
r'0 dTarna — OYMCTKH JaHHBIX. ChIpble JaHHbIE, OCTYIAIONINE Ha BXO VISl aHAJIN3a, YaCTO OKa3bIBAIOTCS HEMoJl-
HBIMH, CJIa00CTPYKTYPUPOBAaHHBIMH, COLEPKAT AyOIUPYIOMy0 HHPOPMALUIO U aHoMaluu. Hanmare anomauit
B MacCHBE BXOJHBIX JaHHBIX MOXET IIPHUBECTH K HEBEPHOW TPAKTOBKE M3BIIEKaeMOM MH(pOPMAINH, K OIIHOKaM B
NpeNICKa3aHu ¥ CUIIBHO CHIDKAET LEHHOCTD MONTyYaeMbIX 3HaHHU. [109TOMy Tak akTyanbHa 3a7ava pa3paboTKH
HOBBIX MOJIXOJIOB K YCTPAaHEHHIO aHOMAJIMH, UM BEIOPOCOB.

B nanHOl craThe paccMaTpUBaeTcs MOAXOJ K OOHAPYKEHHIO BHIOPOCOB, OCHOBAaHHBIN Ha MEpapXHUECKON
KJIacTepH3alluy JaHHBIX U MPUMEHEHHN METO/Ia TOJIOCOBAaHUSI JUIs BBISBJICHUS] HANOOJIee BEPOSTHBIX KaHANAATOB
Ha POJIb BHIOPOCOB.

Kniouesvle cnoga: ananuz OamHwlX, uepapxuieckds KIACMEPU3ayus, Memoo 2010CO8AHUS, OOHApYdiceHue
8b10P0OCO8.
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