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The paper presents the architecture of a multi-agent system based on natural calculations, which places
extra-large integrated circuits’ components using the combined swarm intelligence models. The authors offer
new structures of presenting a solution for the problem of placing extra-large integrated circuit elements
as chromosomes. There is a modified particle swarm paradigm that differs from the canonical one by the possi-
bility of using the positions with integral-valued parameter values in the affine space.

A developed operator called directed mutation helps to move the swarm of particles in the observed solution
area. The authors offer a modified structure of the bees algorithm. The key operation of the algorithm
is the research on promising positions in the neighborhood of basic positions.

The tests have proven that when integrating the behavior models of a bee swarm and a particle swarm,
the results of the new hybrid algorithm appear to be 11-18 % better than each algorithm results separately.

Keywords: VLSI, placement, swarm intelligence, bees algorithm, hybridization, affine search space, directed
mutation operator, neighborhood of basic positions, bionic search.

The peculiarities of the extra-large integrated circuits based on basic standard library elements are in use
of pre-designed library elements and macroblocks. The macro-arrangement of the semi-custom VLSI topology
determines the placement of blocks and tracing of interconnects. The placement purpose is in finding a specific
position on the topology for each element.

The problem of placing VLSI elements [1-3] belongs to the class of NP-complicated combinatorial optimiza-
tion problems. It is rather well studied, and there are plenty of algorithms allowing to solve it. Currently,
the methods based on the artificial intelligence [4, 5] are applied more and more often. Such methods rely on the
collective intelligence modelling [6-8] and also include the bee colony method [9-12].

The communities of these insects possess a collective intelligence. The behavior organization provides these
communities with a possibility to do the tasks that cannot be completed by each insect in particular. This is
achieved through collective action and a simple cooperation among community members. Such communities
have self-organization and adaptation skills.

The algorithms based on such communities’ skills lie in the movement of the community members (agents).
The agents move by positions. The value of the target function depends on the positions determined by agents.
The plenty of particles and bees are presented as a multi-agent system, where each particle or bee is moving in-
dependently according to trivial rules.

Having analyzed the known approaches for solving complicated tasks, it can be concluded that the use of
some algorithm doesn’t give any guarantee of getting a quality solution. In this regard, currently one of the ways
to enhance the effectiveness of the methods of finding a global optimum for solved problems is in the hybridiza-
tion of algorithms [13]. A special feature of a hybrid algorithm is the fact that the advantages of one algorithm
can compensate for the disadvantages of the other. The combination of various search algorithm methods pro-
vides the possibility to determine a bigger area of acceptable solutions and to find a more optimal solution.

The work describes the developed algorithm for solving the problem of placing the VLSI elements combin-
ing the behavior procedures of a bee community and a particle swarm.

Problem statement and concept of placing the elements by the sequence pair method

The characteristics that determine the essence of a placement problem statement are the model of presenting
the placed (construction) elements as geometric objects; the model of the installation space (space of positions),
the model of presenting an electric principle diagram, the character of the target function for the placement
evaluation [3, 14]. It is necessary to place the elements on the commutation field with an optimization of some
quality criteria.
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Fig. 1 Mutual location of elements
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Fig. 2 Placement of elements on the meta net

The main known placement criteria [1, 3, 14] are the total
connection length, the length of the longest connection, the
number of possible intersections, the number of the connec-
tion bends, the chip area etc.

Let’s consider the concept of placing the elements by the
sequence pair method [15]. The pair of sequences A; and A;
is a pair of ordered lists of the same set of elements.
|A1|=|Az|=n. Let there be a pair of sequences (A1 =4, 3, 1, 6,
2,5, A»=6, 3,5, 4,1, 2). Aconstraint graph for the given pair
of lists is formed through a sequential building of a meta net
with 45 degrees tip (fig. 1).

For each element, the plain is divided into four sectors by
two inclined lines. The sequential pair defines the relation for
some pair of elements a; and aj, contained from these lists,
in the following way:

If (A1: <..., & ..., &, ...>, A=<..a,..., aj, ...>), then
a;j is to the right of a;;

If (A1= <. @iy oo, e >, A=<, @, ..., &Gy ... >), then
aj is lower than a;.

Let us consider the location of elements in relation to ele-
ment 1.

For this pair of sequences element 2 is located in the right
sector from element 1 (fig. 2), as in both sequences element 2
is to the right of 1. Elements 6 and 5 are in the lower sector
from element 1 etc.

Therefore, having a pair of sequences ((A1, A2) defining
the horizontal relation between the elements, we can build

Vh = {sn} w {tn}u {vi|li = 1...n},

a horizontal constraint graph Rn(Vh, En) as follows:

En ={(sn, vi)|i = 1..n} U {(v;, th)]i = 1.} U {(vi, vj)| & is to the left of a;},
where v; corresponds to an element, s, is an initial node (left border)), th is a final node (right border). The weight
of the node v; is equal to the width of the element a. The weight of nodes sy, th is zero.

The vertical constraint graph Ry(Vy, Ey) is built in the similar way.

Example: on figure 3 there are both graphs for the placement presented on figure 2.

Both graphs have weighted
nodes, are directed and acyclic, i.e.
we can use the algorithm of finding
the longest way to determine coor-
dinates XY for each element.
As an element’s coordinate, we will
consider the coordinate of its lower
left corner.

The use of the sequence pair
method allows moving from a pair
of sequences to the placement
in two stages. First, the move to the
constraint graph or to the ordered
tree (OT) covering the constraint
graph is made, then, using a trivial
algorithm, the plan or placement
of elements is built over the con-
straint tree.

Fig. 3. Horizontal (a) and vertical (b) constraint graph

Approach to the presentation of solutions in the algorithm based on the swarm intelligence

In the particle swarm optimization method, the agents are particles in the parameter space of the optimization
task. Each particle is connected with the entire swarm, can cooperate with the entire swarm and is attracted to-
wards the best swarm’s decision. At any moment of time (at each iteration) the particles take some positions
in this space. For each position of a particle, the corresponding target function value is calculated. While deter-
mining the upcoming position of a particle, the information about the best particle among the neighbors of this
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particle, as well as the information about this particle at that iteration is taken into account, when the best target
function value corresponded to this particle; on this basis, a particle changes its position in the search space ac-
cording to certain rules [7, 8].

The main idea of the bee community paradigm [8-13] lies in the performance of the two-level search strate-
gy. First, some number of scout bees that search for places with nectar fly out of the hive in a random direction.
After a while, the bees come back to the hive and report to others in a special way, where and how much nectar
they’ve found. After that, other bees go to the found places. Moreover, the more nectar is supposed to be found
on a spot, the more bees fly in this direction. The scouts go to search for other spots, and after that the process is
repeated. The goal of a bee community is to find a place where the maximum amount of nectar is located.

Unlike the canonical particle swarm paradigm, the hybrid algorithms as models for presenting the solutions,
use a wide range of graph structures (a route, a tree, a bigraph, a matching, an internally stable set etc.) [14-22],
where the solutions may be presented as various graph structures.

This doesn’t allow using the canonical particle swarm paradigm directly (for example, a problem of a di-
rected mutation of one tree towards another is quite nontrivial from a formal point of view).

Due to this, a development of a modernized search space structure, a data structure for presenting solutions
and positions, modernized mechanisms of particle movements in the search space are urgent.

There is an offered approach to building a modified particle swarm paradigm, which enables simultaneous
use of chromosomes with integer parameter values in the bees algorithm and the algorithm based on a particle
swarm.

Affine search space

Let there be a linear vector space (LVS) with n-dimensional points as the elements. We compare any two
points p and g of this space with the unique ordered pair of these points, which we’ll call a geometric vector
(vector) further. p, g € V(p, q) is a geometric vector (an ordered pair).

The set of all LVS points refilled by geometric vectors is called point-vector or affine space. The affine space
is n- dimensional if the corresponding LVS is n-dimensional, too.

The affine relaxation particle swarm model (ARM) is a graph with the nodes matching the positions
of a particle swarm, while the arcs match the affine connections between positions (points) in the affine space.
The affinity is a proximity measure of two agents (particles). At every iteration, each agent pi goes to a new state
(position) in the affine space, so that the weight of an affine connection between the agent p; and basic (best)
agent p+ is being reduced. The movement of agent p; to the new position x;(t+1) from xi(t) happens with the help
of the relaxation procedure.

The special relaxation movement procedure depends on the data structure (chromosome) type: a vector,
a matrix, a tree and their sets that is an interpretation of solutions.

The best particles from the point of the target function are declared “the center of attraction”. The displace-
ment vectors of all particles in the affine space strive to these centers.

The movement is possible considering the proximity degree to one basic element or to a group of neighbor-
ing elements and considering the probability of movement to a new state.

Search by the particle swarm method

In the heuristic algorithms of the swarm intelligence, a swarm of particles inhabits the multidimensional
search space [7, 8]. During the search process by the particle swarm method, each particle goes to a new posi-
tion. A new position in the canonical particle swarm paradigm is determined in accordance with the methodolo-
gy described in this paper [9].

Have a look at the mechanisms of a particle swarm in accordance with the concept of placing elements by
the sequence pair method.

Suppose we have a particle swarm P = {pi|k = 1, 2, ..., n}. Each particle px on a step t is located in the posi-
tion Xk(t). Since the placement is defined by a pair of ordered lists Ay and Ay, position X(t) corresponding parti-
cle py, is determined by a set of 2 chromosomes corresponding to a pair of ordered lists A; and A;
Xi(t) = {Hia(t), Ha(1)}.

Chromosome Hii(t) = {aill =1, 2, ..., ni} is a set of n genes gkii. A value of gene ggi is equal to the value of a
matching element from list A;.

The search space of one chromosome includes the number of axes X equal to the number of genes in the
chromosome Hii(t). In the chromosome Hii(t) an axis (axis number) fits to each gene. The base points on each
axis X are integers in the range from 0 to n.

Suppose the list B = <1, 7, 21, 4, 8, 18> be used as a basic list. |B| = 6. Search space X includes 6 axes: X1-Xs,
in accordance with the number of list elements. Each axis fits to a list position. The reference points x; on the ax-
is Xi= <x;j|j=1, 2, ..., 6> are ordered values of list B:
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Xi=<xii=1,Xio=7,Xi3s=21, Xiu=4, Xis= 8, Xig= 18> =<1, 7, 21, 4, 8, 18>.

For example: List Mj=<21, 8, 7, 1, 8, 4, 18> is presented as position H;= {X13, X25, X32, Xa1, X54, X6}

Have a look at the movement procedure that happens with the help of the directed mutation operation
(DMO), which the authors have developed. It lies in the change of the mutual location of elements in the list.
Particle pi is moving from the position H;(t) towards to new position Hi(t + 1) with a new mutual location of
elements in the list. The paper describes the process of the directed mutation operation in details [9].

Example of the movement procedure process (DMO).

Let positions H;(t) u H.(t) be as follows:

H.(t) = {1, 10, 2, 3,8}, Hi(t) = {1, 3, 2, 10, 8}.

On the first cycle, the set of pairs D1=(1, 3), (2, 10) is formed. The mutual locations of pair elements (1, 3)
in Hi(t) and H,(t) coincide while the ones of pair (2, 10) don’t. Therefore Si,(t) = 1. In Hi(t) the elements of pair
(2, 10) are interchanged. Hi(t + 1) = {1, 3, 10, 2, 8}.

On the second cycle, the set of pairs D,=(3, 10), (2, 8) is formed. The mutual locations of pair elements
(10, 8) in Hi(t + 1) and H(t) coincide while the ones of pair (2, 10) don’t. Hence Si(t)=1. In Hi(t + 1) the ele-
ments of pair (3, 2) are interchanged. Hi(t + 2) = {1, 3, 10, 2, 8}.

The main purpose of the movement of the particle px is to find a place with the best mark by it. The common
purpose of a particle swarm is to receive an optimal placement solution.

Adaptive behavior of a bee colony.

Suppose we have a bee community P = {pi|k =1, 2, ..., n}. At the first iteration (t = 1) the scout bees are
randomly placed in the solution search area. Each scout bee px on step t chooses position X(t). Each position
is an analog of a nectar spot and a model of a placement problem solution. The nectar volume is a criterion value
at this point.

Like in the particle swarm algorithm, position XKk(t) selected by a bee is defined by a set of 2 chromosomes
corresponding to a pair of ordered lists A1 and A2. Xk(t) = {Hk1(t), Hk2(t)}.

Chromosome Hii(t) = {gwll =1, 2, ..., ni} is an ordered set of n genes gk The value of gene g is equal to
a value of a corresponding element in list A;.

The first operation that a bee swarm carries out lies in the random generation of a set of (positions) solutions
X(t) = X(®)|k =1, 2, ..., n;} that differ from one another. For each solution X(t) a value of target function Fy
is calculated. In set X(t) ns of the best solutions are selected, which belong to the set of basic solutions (positions)
XP(t). At the second approach, the probabilistic choice X° (t) takes place. Probability p(X®) of choosing basic
position X% e X® (t) by a foraging agent is proportional to the value of target function F% in this position and
is defined as follows:

POXCK(D)) = FOW(O) / Z(FO(D)-

At each iteration, a movement from one population of basic positions to another takes place.

The formation of new solution X?(t+1) lying in 8 — neighborhood of basic position X°(t) happens in the way
5 of selective (random) pair interchanges of neighbored elements in vector X°(t). We will take that solution X? (t
+ 1) lies in 6 — neighborhood of solution X®(t), if XP(t + 1) was received in the way 0 of random pair inter-
changes of neighbored elements in list X(t).

For each basic position X°(t) e X°(t), the probabilistic choice of a set of positions O°%(t + 1) takes place,
which are located in 8 — neighborhood of basic position X(t).

Let us call the set of positions chosen in 6 — neighborhood of position XP(t) as O%(t + 1). The evaluation of
each position of set O°%(t + 1) is calculated. In each 6 — neighborhood OP(t + 1) the best position is selected.
The best positions of 6 — neighborhoods form an new set of basic positions X°(t + 1).

The best solution (position) of set X® (t + 1) is saved, and then there’s a movement to the next iteration.
At the beginning of the second and at the subsequent iterations, first of all, a set of basic positions X° (t) (t = 2, 3,
..., L) is formed, which is created of two parts X?X(t) and XP2(t), XP2(t) U XP2(t) = X°(t). In the first part XX(t) n°;
of the best position are being included among positions X (t — 1) that agents have found in each area formed
at the previous iteration. The agents form the second part XP(t) in the same way as at the first iteration. Next,
the actions similar to the actions considered at the first iteration takes place.

Hybridization of the swarm intelligence structure.

The algorithms based on a collective behavior contain a solution search area, there is a swarm of agents. The
location of each agent is some solution. Finding a solution is the movement of agents in the acceptance region.
On our case, a swarm is as a plenty of solutions and a bee (particle) is as an agent, which allows forming hybrid
solution search procedures by uniting the models of a particle swarm and a bee community on the collective
adaptation basis.
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The developed algorithm for solving the placement problem of the VLSI elements uses the bionic search
architecture and consists of united procedures of a bee community and a particle swarm. It helps to get out of lo-
cal holes and increases the algorithm convergence. The data is in a matrix or vector form.

Each particle pg on step t is in position Xk(t), as the placement is defined by a pair of ordered lists A1 and A,.
Position X(t) corresponds to particle p, and it is defined by a set of 2 chromosomes corresponding to the pair of
ordered lists A1 and Az Xk(t) = {Hiu(t), Hie(t)}

Chromosome Hii(t) = {agwill = 1, 2, ..., ni} is a plenty of n genes gkii. The value of gene gy is equal to the val-
ue of a corresponding element in list A;.

During the movement in the acceptance region, the community of agents is as a bee community by turn
or a particle community with certain characteristic of the adaptive behavior.

The hybridization is next. First, a swarm of locations X(t) = {X«(t)|k =1, 2, ..., n/;} forms with the help
of the particle swarm algorithm. Using the particle swarm methodology, there are the particle swarm places X(t)
in the virtual value space, at displacement the particles from place X(t — 1). According to the proposed approach
to the integration, new positions are as basic positions X°(t) those a swarm of scout bees have discoved. Next,
in accordance with the bee colony mechanisms, forager bees inspect 6 — neighborhoods of each basic position of
set X°(t). The key operation of the bees algorithm is the research of promising positions and their 6 — neighbor-
hoods in the solution space. In each 6 — neighborhood OP(t + 1) they choose the best position. The best position
of 6 — neighborhoods create a new set of basic positions X°(t + 1). At the subsequent iteration (t+1), the set of
positions X°(t + 1) is considered as a set of positions of a particle swarm. The total estimation of the dependence
of the hybrid algorithm’s working time is in the range O(n?) — O(n®).

Experimental research

The research of a swarm placement algorithm (SPA) consists of the forming test problems for a placement
problem with a present optimal result (PEKO) [22]. The both formats GSRC Book Shelf and LEF/DEF have the
optimal results of PEKO and they are in the Net [23, 24].

All the circuits in REKO are local, i.e. the length of the conductors in each circuit has the lowest possible
value. The PEKU setting schemes consist of local circuits in PEKO style. For the experimental researches of the
developed placement program they used the PEKU setting schemes with a known optimum Fg,: EX. 1 per 30
blocks, Ex.2 — 60, Ex.3 — 90, Ex.4 — 120, Ex.5 — 150. For comparison, the authors chose the modern placement

algorithms: Dragon v2.20 [25], Capo v.8. [26],
Tablel mPL v.2.0 [27], mPG v1.0 [28] u QPlace v.5.1.
[29].
To determine the optimality of the achieved
Tecr | Dragon | Capo | mPL | mPG | Qplace | PAP | Values, the authors calculated the parameter: the
length of a connection to the best length of the
Ex1 1071 0.73 | 081 | 0.71 | 0.73 0.9 connections (for PEKO) or (for G-PEKU and
Ex.2 | 0.72 072 | o084 | 072 |0.78 0.89 | PEKU). This ratio is a degree of quality. No one of
the placement algorithm achieved the quality ratio
Ex.3 | 0.81 08 083 | 0.81 | 0.82 089 | value close to 1 during the research.
Ex.4 | 0.83 084 | 085 | 0.83 | 0.81 0.91 Table 1 shows the received values of the quali-
ty degree indicator for a range of known algo-
Ex5 | 082 |08 | 086 |0.82 | 084 | 001 | jdricon Zlgorithm, g g

The quality degree of the de-
veloped SPA program is 10%
| higher than of the programs Drag-
| on, Capo, mPL, mPG u Qplace.
I BCA O(n?).

I The authors put into practice
I
I

Quality degree indicator values

ehe algorithm convergence analysis
of SPA in a certain way. They ran
__________________ each test task for completion for 10
| Number times. For each test, they defined
| of iterations an iteration number, after which no
| > criterion improvement happened
20 40 60 80 100 130 150 next. Fig. 4 shows the experiment
results. The test revealed that the
algorithm determines the best result
at iteration 111-131. The algorithm
converged at iteration 128 (fig. 4).

Objective function

minimum

Fig. 4. Quality evaluation of the hybrid algorithm
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The time complexity of the algorithm with the fixed values of the population size and number of generations
is O(n). The total time complexity of the hybrid algorithm is O(n?) — O(n%).

Conclusion.

The analysis of the known methodologies applied for receiving optimal solutions in the combinatorial logical
tasks has determined the choice of approaches containing the collective behavior models. These approaches al-
low solving difficult problems, which achieve the optimal criterion values in acceptable time.

The algorithm consists of combined procedures of a bee community and a particle swarm, which allows get-
ting out of “local holes” and increases the algorithm convergence. In the suggested method the authors shows the
data in the matrix or vector form.

The paper describes a modified particle swarm paradigm ensuring, unlike the canonical method, the possibil-
ity to search for solutions in the affine space with integer parameter values. The authors have considered the
mechanisms of the particles” movement in the affine space for reducing the weight of affine connection. They
describe directed mutation operators, the essence of which lies in the change of integer gene values in a chromo-
some. They suggested a modified bees algorithm structure. For each basic position, they carried out a probabilis-
tic choice of a set of positions located in the neighborhood of a basic positions.

The improvement of the work quality of the developed algorithm is possible by setting up the control param-
eter values.

The time complexity of the algorithm with the fixed values of a population size and number of generations is
O(n). In total, the dependence of the working time of the hybrid algorithm is O(n?) — O(n®).
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YUnemumym xomnviomepnvix mexnonoauii u ungpopmayuonnoii bezonactocmu IOxcrozo pedepanvrozo
YVHUGepcumema, Kagheopa cucmem asmomMamuzuposanino2o npoekmuposanus, 347928, Poccus, 2. Tazanpoz)

B pabore ommcaHa apXWTeKTypa MHOTOAr€HTHOHW CHCTEMBbl Ha OCHOBE IPHPOJHBIX BhrumcieHuid. Cucrema
BBINOJTHSIET pa3MelieHHe KOMIIOHEHTOB CBEPXOOJIBIINX HHTETPAITBHBIX CXEM, UCIIOJB3Ysl 00beIMHEHHBIE MOIEIIH
poeBOro MHTEIUIEKTA. IIpe/ioKeHbl HOBBIE CTPYKTYPBI MPEACTABICHUS PELICHUS 337adi Pa3MELICHUs JIeMEH-
TOB CBEpXOOJIBIINX MHTETPANBHBIX CXeM B BHIE XpoMocoM. [IpeacTaBnena MoanpuunpoBanHas mapagiurma pos
YacTHLl, OTJIMYAIOIIAsCA OT KaHOHUYECKOH, BO3MOMKHOCTBIO HCIIONB30BaHUS B aQ)UHHOM NIPOCTPAHCTBE MO3H-
IIUH ¢ IETOYNCICHHBIMY 3HAaYCHUSIMH TapaMeTPOB.

[NepenBuxeHre posi YaCTHIl B pacCMaTPUBAEMOil 00JaCTH pellleHUH TOCTUTaeTCs MPH MOMOIIH pa3paboTaH-
HOTO OIlepaTopa, Ha3bIBAEMOT'O HampasieHHas MyTanus. lIpemtoxeHa Moan(UIMpOBaHHAs CTPYKTypa ajro-
putMma nuest. KirroueBoii onepanyei anropurma sBIsSeTCsl UCCIIeJOBaHUE MEPCIIEKTUBHBIX MTO3UINHN, JIEKAIINX B
OKPECTHOCTAX 0a30BBIX MO3UIHUH.

TecToBBIE UCIIBITAHNUS IOKA3aJIM, YTO IPU MHTETPAMU MOJEINEH IOBEICHUS POs ITUeJl U POst YaCTHIL, Pe3yJIb-
TaThl HOBOT'O THOPHHOTO alropuT™Ma nojiy4atorcs Ha 11 — 18 % nyurie, yem y Kakaoro ainroputMa o oTAeib-
HOCTH.

Knroueswie cnosa: ChUC, pasmewerue, poegou unmeniekm, nueJuHblil aieopumm, pot yacmuy, cuopuousa-
Yus. MHO20A2EHMHAsA Ccucmema, ag@unnoe RPOCMPAHCMBO NOUCKA, ONEPAMOp HANPABIEHHOU Mymayuu,
OKpecmHOCmb 6A308bIX NO3UYUL, OUOHUYECKUT NOUCK.

Brazooapuocmu: paboma evinonnena npu gunancosol noddepoicke epanma PODU, npoexm Ne 18-07-
00737 A.
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